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Chapitre 4

NUMERICAL SERIES

[ I \he notion of sequence is closely linked to that of "series", that is to say linked to the

problem of the summation of an infinity of terms. It was the Greeks in the 5"

century
BC who began to glimpse the notion of infinity. It was only in the 16! century that infinity
took on its full meaning. The notion of series comes from the fact that for an infinite list of real
numbers, that is to say for a sequence (Uy,),en, we pose the problem of considering "the sum" of

all the elements of this sequence of numbers : Uy + Uy + ..... + U, + ....How can we give meaning

to a sum of an infinite number of terms.

4.1 General information on numerical series

4.1.1 Definitions

Definition 4.1.1 To any sequence (U, )nen of real or complex numbers, it is possible to associate
a sequence (Sp)nen defined by : Vn € N, S, = >0 Ug. Conversely, to any sequence (Sy)nen, it

is possible to associate a sequence (Up)nen defined by : Uy = Sl and ¥n € N,Up11 = Spi1 — Sp-
We call series the sequence (S,),en and we note : » U, or by > Uy or by Y U,.

Definition 4.1.2 Let (Up)nen be a sequence of real or complex numbers. The sum S, = > 1_ Uy

is called the partial sum of rank n of the series > U,.
- The sequence (Sy)nen is called the sequence of partial sums of the series > Uy,.

- The sequence (Up)nen is called a sequence associated with the series Y U,. U, is said to be a

general term of the series Y U,.

Dr: Fatima OUAARUniversity of 5
Mohamed Kheidar, Biskra



4.1.2 Convergence of a series

Definition 4.1.3 - If the sequence of partial sums (Sp)nen of a series Y U, is convergent with

finite limit S, we will say that the series is convergent and we will note Y U, = S.

- If the sequence (Sp)nen tends towards +oo or towards —oo, we will say that the series is

divergent of the first kind and we will note ) U, = f+o0.

neN
- If the sequence (Sp)nen does not converge towards a finite limit, nor towards oo, owe will

say that the series is divergent of the second kind.

Remark 4.1.1 Any finite series is convergent since the sequence of partial sums is constant

from a certain rank. S, = Uy + Uy + ...... +Up Vn > p.

Remark 4.1.2 (a) We say that ), Uy and ) Uy, where n € N, are of the same nature.

n>ng

(b) In the case where the series is convergent, the symbol S =} _y U, designates both the

series and also the result of this series.
(c) The series ) . Uy converges to S if : Ve > 0,3Ng € N/,n > Ng = |S — S| < e.

We use the definition of the convergence of a sequence because the partial sum (Sy,)nen is none

other than a sequence, and we can write Ve > 0,3Ng € N/,n > No = |3 /2 | <e.

Remark 4.1.3 The sequence of partial sums (Sy) can be divergent by not having a limit when
n — o0 or by not having a finite limit for example (S,) = exp (in) and S, = Inn.
The nature of a series (convergence or divergence) does not depend on the first terms of the

series, which means that the series ) _,u, and ) u, converge (or diverge) at the same

n>N

time.

Proposition 4.1.1 For the series ), .y Uy to be convergent, it is necessary that the associated
sequence (Up)nen be convergent with zero limit. However, this condition is not sufficient, there

exist divergent series whose associated sequence (Up)nen s convergent to 0.

Example 4.1.1 We consider the series ), - e%, we know that lim en =1 # 0, therefore

n—---+00

the given series is divergent.

Definition 4.1.4 a) We call the sum of two numerical series Y . Up et >, - Vi, the general

term series Vn € N,W,, = Uy, + V,, from where Y .xWn = >, cxnUn + 2 nen Va
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b) We call multiplication of a numerical series Y .y Un by a non-zero scalar A\, (A € R* or

A € C*) the general term series Yn € N, Wy, = AUy, hence Y, .y Wi = > oy (AUR).

¢) We call the product of two series (Up)nen and (Vy)nen the general term series ; Vn € N, W,, =

Y oheo UVi—i hence 3, cnWn = > ey O heo UVi—k) -

Proposition 4.1.2 (Vector space of convergent series) Let (Uy,)nen et (Vi)nen be two real
sequences. If the series Y . Up and Y o Vi are convergent with respective results U and V,

then :
- The series Y, o (Un + Vi) is convergent with sum U + V.

- The series Y, o (AU + pVy) with (A, u € R or C) is convergent with sum AU + pV.

Consequence : We note that the complex series ) _y(an +ib,) converges if and only if the two

real series ) -y an and Y- b, converge. Then Y (an +ibp) = 3 cntn + 02, cn n-

Proposition 4.1.3 - The sum of two series, one of which is convergent and the other divergent

of the first kind, is divergent of the first kind.

- The sum of two series, one of which is convergent and the other is divergent of the second

kind, is divergent of the second kind.
- The series ), oy AUy with (A € R or C) is of the same nature as the series ), .y Uy.

- The product of two convergent series is not necessarily a convergent series.

4.1.3 Séries de Cauchy

Proposition 4.1.4 A series ) .Uy is convergent if and only if

p
Ve>0,ANg €N, /p>n>No=>|> Ui/ <e
k=n

or :
n-+p

Ve>0,¥p>0,3ANg €N, /n > Nog=> | Y Ul <e

k=n
4.2 Positive term series

The interest in studying series with positive terms (i.e. with terms in R™) is that the sequence

(Sn)nen of partial sums defined by its general term : Vn € N, >} Uy is real and increasing.
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Indeed ; Syy1 — Sy = 10 Uy — S0y Up = Uy, = Uy, > 0.

Proposition 4.2.1 A series with positive terms U, is either convergent or divergent of

neN
the first kind (of limit +00). Furthermore, for this series to be convergent, it is necessary and
sufficient that the sequence (Sp)nen of partial sums defined by its general term : ¥n € N, S, =

ZZ:O Uy, is bounded.

4.2.1 Comparison criterion

Proposition 4.2.2 Let ) U, and ) Vi be two series with positive terms, satisfying,
vn e N, U, <V,.
a) If 3, cn Vi, is convergent, then ) Uy, is convergent.

b) If 3 e Un, is divergent of the first kind, then ) Vi is divergent of the first kind.

Proof. a) If we have U,, < V,,,Vn € N, we also have : Uy+U1+....4+U,, = S, < Vo+Vi+...4V, =
S, < Z:ﬁ% V, =S If > nen Vi converges, then S exists and Y nen Un is increased and therefore

convergent.

b) obvious. m

Proposition 4.2.3 (Use of equivalences) Let ) Uy, and ) Vi be two series with po-

sitive terms. If U, o Vip then Y-, cnUn and Y, . Vi are of the same nature.
o0

1
Example 4.2.1 (Harmonic series) The harmonic series is given by its general term U, = —.
n

The general term tends towards zero, but the series diverges.

1
Example 4.2.2 U, = and V, = — we notice that U, < V,,Vn € N therefore ZnEN Va
n

ncos?n
diverges hence the divergence of Y - Up.

2 2 . 1
Example 4.2.3 Un = arcsin ﬁ, Vn = 4712711 We have U, ~ V,, and we set V,, = o

then V,, ~ V, we see that Y neN V,, diverges, so > nen Va diverges and finally Y, o Un diverges.

.2
Example 4.2.4 U, = S

1
RO Onal, < 3= Vn, we know that ), . Vi converges (Riemann

serie’s ) so Y .y Un converges.

oshi

C = 1
Example 4.2.5 Un = Loand V, = —. We see that U, ~ V,, but ZneN V. diverges,
n n

therefore ), . Un diverges.
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4.2.2 Cauchy criterion

Proposition 4.2.4 Let ) Uy, be a series with positive terms. We consider lim /U, =1

n—-s-+oo

where | € Ry U {+o0}.

a) If 0 <1 <1, then the series ), .y Uy is convergent.
b) If 1 > 1 then the series ), . Un is convergent.

¢) If L = 1 we cannot conclude

We note that if nlr{lkoo VU, BN 1, then we can conclude that ), U, diverges.

TL2 n
Example 4.2.6 Let the series be ), .nUn = >, cn (Zig) . We have /Uy, = (212) =
n
1 + % E— ﬁ = ea‘_b = l
1+2 eb

Discussion : If b > a, then | < 1, the series converges.

If b < a, then l > 1, the series diverges.

If a =0b, then U, =1 - 0 the series diverges.

4.2.3 D’Alembert criterion

Lemma 4.2.1 Let ), nUn and ), . Va be two real series with positive terms. If we have

Uns1 < Vi1

VYn € N
=TT, S

, such that; Ja € R, then Vn € N, U, < aV,.

Theorem 4.2.1 Let ZneN U, and EneN V. be two real series with positive term such that :

lirri — =1 # 0. Then the two series converge or diverge at the same time (of the same
n—-—r+0oo n

nature).

Theorem 4.2.2 Let ) Uy be a series with positive terms. We consider the series Y, . Va
Un+1 Un+1

moreover we consider lim V, = lim
n n—--+00 n—---+00

defined such that, Vn € N, V,, =

=1 ou

n

l € Ry U{+o0}.
a) If Ol1, then the series ), . Uy is convergent.

b) If I > 1 then the series Y, . Un is divergent.

neN

¢) If 1 = 1 we cannot conclude.

U .
ntl >1 1, then we can conclude that ), U, diverges.

We assume that lim

n—--+oo n
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3 3
Example 4.2.7 Let the series Zn>ln7' We set Vn > 1,U, = " then lim =
= n!

n!
1)3 n!
M.n— =0 < 1. The series converges.
n—-+00 (TL + 1)' n3

Proposition 4.2.5 Let (Uy,)nen be a sequence of positive real numbers. Suppose that lir£1r VU, =
n—-—r0oo

I, lim Uni1 =1 thenl=1.
n—--+400 n

4.2.4 Series, Integrals and Riemann criterion

Proposition 4.2.6 Let f be a decreasing function, defined from RT into R™ such that : U, =

f(n). Then the series ), U, and f0+oo f(z)dz are of the same nature.

Definition 4.2.1 We call a Riemann series a series of the form where a € RY..

n>1 E

Proposition 4.2.7 a) If 0 < a < 1, the Riemann series diverges.

b) If a > 1, the Riemann series converges.

4.3 Series with any terms

In this paragraph we will study the case of series ) U, where U, s complex or real of any
sign.
4.3.1 Definition et proposition

Definition 4.3.1 We will say that the general term series U, € C is absolutely convergent if

the series with positive terms of general term |U,| converges.
Proposition 4.3.1 Any absolutely convergent series is convergent.
Remark 4.3.1 There exist convergent series which are not absolutely convergent.

1 -1 1

Example 4.3.1 Let ) U, such that Us, 1 = > and Us,, = o withn > 1. Then |U,| ~ —

n n n

therefore Y . |Un| diverges, the series Y, . Un is not absolutely convergent. However, So;, = 0
1

and Sop_1 = o therefore the series ZnGN U,, cconverges with zero sum. We will say that a series

which converges without being absolutely convergent is semi-convergent.
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4.3.2 Abel’s Sum

Theorem 4.3.1 Let ) Uy be a series whose general term, real or complex, is written in the

form Uy, = anby, ; Suppose that :
1) The sequence (an)neN is in positive terms decreasing and tends to 0 when n — 4o0.
2) There exists M € R such that Vo € N| Y "), by| < M.

Then the series ), .y Un is convergent.

4.3.3 Alternating series

Definition 4.3.2 We call an alternating series a numerical series whose general term U, is of

the form Uy, = (—1)"V,,, where (Vy,)nen denotes a sequence of constant sign.

n

Example 4.3.2 The series Y .-, (

1 s an alternating series. It is called alternating har-
n

MOoNIC Series.

Theorem 4.3.2 If the sequence (Vi,)nen, Vi > 0, is decreasing and converges to zero, then the
series Y, oy Un = Y nen(—1)"Vy is convergent and its sum S satisfies the inequality : Sapy1 <

S < Sy,
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Chapitre 5

SEQUENCES AND SERIES OF
FUNCTIONS

I} il any functions appear as boundaries of other simpler functions. This is the case, for
example, of the exponential function, which can be defined by one of the following

oo "

two formulas. e* = lim (1+2")" oue® =) "7 e

n—--—+00
This is also the case for more theoretical problems, such as when we construct solutions to

equations (for example differential), we often construct by induction towards an approximate

solution which converge towards an exact solution.

5.1 Function suites

5.1.1 General notions

In the following, K designates one of the fields R or C. Let E be a K-vector space and I be any
set, the set Fg(I) of maps defined on I, with values in F, is equipped with the following two
scalar operations : addition (f,g) — f+ ¢ and multiplication by a scalar (A, f) — Af, defined
by :if f, 9 €ppqy and A € K, (f + 9)(z) = f(z) + g(z) and (Af)(z) = Af(2).(FE(I),+, %) is a

K-vector space.

Definition 5.1.1 A sequence in Fg(I) is a map of N in Fg(I) which associates with each

natural number n a function f,. It is noted (fn)n>0 or simply (fn)n-

Remark 5.1.1 o (fy1n,)n 5 also denoted (fn)n>ng-
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e In a sequence (f,)n, the f, are assumed to have the same definition set.

e The sequence (fy, ), can be seen as a numerical sequence (f,(x)), dependent on the parameter

x, traversing a given set.

5.1.2 Simple convergence

The notion of convergence of a sequence of real or complex numbers naturally leads to that of

convergence at each point for the sequences of functions defined as follows.

Definition 5.1.2 A sequence (fn)n of maps fn : I — K is said to simply converge on I if

there exists a map f: I — K such that Vz € I, lini fn(z) = f(x)
n— 100

- f is called simple limit of (f,)n
- If f exists it is unique.

We write :

(VwE];nﬂgl_oofn(x):f(xO < (Vx € I;Ve > 0;3N(z,¢)/n > N) = |fulz) — f(2)] <¢).

Remark 5.1.2 It should be noted that N depends on x and €.

Example 5.1.1 A numerical sequence is a very particular case of sequences of functions, here

the functions are constants.

1
Example 5.1.2 Let I =]0,1] and K = R, f,(z) = CES Then lin+1 fulz) = f(z) =

0,Vx € 1.

n x
Example 5.1.3 We consider Vo € R, fp(z) = (1 + E) — "(+3) | Then Vo € R; fn(z) =
n

er.

Theorem 5.1.1 Let (fn)n €t (gn)n two sequences in Fr(I) simply convergent to f and g res-

pectively, and A € K, Then
1. The sequence (fn + gn)n simply converges to f + g.
2. The sequence (Afp)n simply converges to \f.

3. The sequence (fngn)n simply converges to fg.
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Theorem 5.1.2 (Cauchy criterion) For a sequence (fn)n of applications f, : I — K to

simply converge, it is necessary and sufficient that :

Ve € I,Ve > 0,3IN(x,e)/m > N(z,€);n > N(z,¢) = |fm(x) — fn(z)| <e.

5.1.3 Uniform convergence

Example 5.1.4 Let I = [0,1] and Vn € N, f,(x) = 2, it is clear that lim fu(x) = f(x)

n—---+o0o

such as,
0 if x€][0,1]
flz) =
1 ifxz=1
We conclude that :
- Fach function f, is continuous whatever n.

- Each (fn)n simply converges to f.

- f s not continuous.

This is why it is necessary to use a more precise notion which preserves continuity by passing

to the limit, this is uniform convergence.

Definitions

Definition 5.1.3 We call the norm of uniform convergence the norm for (fy)n and f of Fe(I); || fn — fll =
sup | fn(z) — f(x)].

zel

Definition 5.1.4 A sequence of maps f, : I — K is said to be uniformly convergent on I if

there exists a map f: I — K such that,

i (sup 7, (2) = 1)) =0,

n—--+o0o zel

or,

Ve > 0;3IN;Vr;Inn > N = |fu(z) — f(z)] < €.

or

i f - fll=0.
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Interpretation : We have |f,(z) — f(z)] < e = f(z) —€ < fn(z) < f(x)+ e. We say that

for n > N, the graph of f,, is contained in a band of width 2¢ symmetrical with respect to the

graph of f.

Proposition 5.1.1 Uniform convergence implies simple convergence. Indeed ; Vx,Yn : | fn(z) —

f@)| <|fn—fl o 0. The converse is false

Example 5.1.5 Let f,(z) = : Zm with x € [0, +o00[. We have shown that this sequence simply
nT

converges to

0 ifzel01
f(z) =
1 ifz=1
as; || fn — fll = sup|fu(z) — f(x)] = su 1 lim 1ie | fn—fll 0, hence
: — = — = = = .€e. n — - U,
A xel? " xel?l—l—n:c z—0 1+ nx

the convergence is not uniform.

Cauchy criterion for uniform convergence

Theorem 5.1.3 Let (f,)n be a sequence of functions on I. For the sequence (fn)n to be uni-

formly convergent on I towards a function f it is necessary and sufficient that :

Ve > 0;AN;Vn,Vm;Ve C I[n,m > N = |fu(x) — fi(2)] < €.

or

Ve > 0; AN;Vn,VYm;Vae C Iln,m > N = || fu(x) — fm(2)|| < €.

2
Example 5.1.6 Let f,(x) = % sur I =10,1]. We iuwe nir{lkoo fn=f=0. As the upper
bound of the function y — 22" [0, 4+00[ is equal to 3 fory =1, we have || fu|| = sup | f| =
Y I
1
—. Then f, — 0 simply but not uniformly.

2
How to show that a sequence of functions converges uniformly

To show that a sequence of functions (f,,), is uniformly convergent :

1. We show that it is simply convergent, which allows us to define f.
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2. We seek to increase |f,(z) — f(z)| by a sequence (g,), of positive real numbers which

converges to 0 such that (g,), does not depend on z.
To determine (&5,)n, we have two methods.

1. Majoer |fn(z) — f(x)| independently of x.

2. Calculate sup |f,(x) = f(x)| using the study of the function |f,(x) = f(z)].
x€l

Operations and uniform convergence

Theorem 5.1.4 Let (fn)n and (gn)n be two sequences in Fg(I) uniformly convergent to f and

g respectively, and A € K. So
(i) The sequence (fn + gn)n converges uniformly f + g.
(i) The sequence (Afn)n converges uniformly Af.

(#ii) If the maps f and g are bounded, the sequence (fngn)n converges uniformly to fg.

Remark 5.1.3 In (iii), the assumption (f and g bounded) cannot be omitted, otherwise the

theorem is false.

5.1.4 Properties of uniform convergence
Continuity

Theorem 5.1.5 Let (frn)n € Fr(I), be a sequence of functions uniformly convergent to f. If all

functions f,, are continuous at xg, then f is continuous at xg.

Proof. Either
¢ > 0;3N/¥n > N,Vz € I; | folz) — f(z)] < % (5.1)

Let us fix an integer n > N, f, being continuous in zg, then It exists
5> 0/Va € e — w0l <8 = |ful@) = fulwo)| < (5.2)
From (5.1)) and ((5.2)) we obtain :

Vo e I le—zo| <6 = |fu(2) = fu(20)| < [f(2) = fa(@)|+|fn(2) = fu(zo)[+|fn(z0) = f(20)| < e
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corollary 5.1.1 If f, — f uniformly and if all functions f, are continuous on I, then f is

continuous on I.

Remark 5.1.4 1) If a sequence of continuous functions converges to a non-continuous function,

the convergence is not uniform.

2) The theorem gives a sufficient condition for f = lim f,, to be continuous, but this condition
s not necessary. It can happen that the functions f, being continuous, f is continuous, without

the convergence being uniform.

Example 5.1.7 Let (fn)n be such that I =10, 2].

1
nx? if 0 << —
1 b
fa(@)= na?+2n if —<ax<>
nT, T m
0 ife < —
n

The functions f, are continuous, and nlnioo fn=f =0 simply. Because :

Ifaz=0, f,(0) = 0.

If £ >0, fn(x) =0 for all n > %

However the convergence is not uniform since : ||fn(z) — f(2)|| = fn(ﬁ) = n — +oo when

n — 400.

Example 5.1.8 If a sequence of functions (fy)n simply converges to f, then f is not necessarily

continuous. Let I = [0,1], and let f,(x) = a™. It is clear that f,(z) — f(x) such that

0 ifzel0,1]
fz) =
1 ifz=1
f is not continuous.
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Example 5.1.9 There ezist sequences (fn)n which converge to f continues. Either

0 ifx <0
n if()gasgl
R R
nr+2 if - <x <2

2

K0 ifv >

- For x <0, we have lim f, =0
n—-+o00

2
- For x > 0, we have n > — = f,(x) = 0 therefore liIﬂl_ fn =20, so the limit is continuous
n n—--+400
on R although the convergence is not uniform there since : || fu|| = sup | fn(x)| = 1 does not tend
zeR

towards zero.

Integration

Theorem 5.1.6 Let (f,)n be a sequence of integrable functions on I = [a,b] converging uni-

formly to f. So :
a) f is integrable on |a, b

b)  lim 12 fa(@)de = [P f(z)de,
Proof. a) Let € > 0, there exists n such that :

€ €

Vo, € R,n € [a,b], fa(z) — 2(b—a) < f(@) < fol2) + 2(b—a)

(5.3)

because f, — f uniformly. The function f, being integrable, there exists a subdivision d =

{0,z ...,z } of [a, b] such that

k
€
Z(Mnl — M) (T — 2i-1) < B} (5.4)
=1
or
M,, = sup f, et my,, =inf[z;_1,x;]fn.
[Ti—1,74]

Noting M; = sup fand m;= inf f.

[i—1,] [i—1,24]
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Then (j5.3) implies for 1 <34 < k that

C <mi< My, +
My, — m ,
"o2b—a) T T M 2(b—a)
Which gives taking into account
k k .
zxmjnmwfmFﬂSE}M@—mw@rﬂmﬁ+§<a
i=1 =1

Thus, f is integrable. m

b) We have for all n;

b b b
\/ fn<x>dx—/ f(w)d:c\s/ = fldz < | fo — £l (b— a) — 0.

Remark 5.1.5 The condition f, — f uniformly is sufficient but not necessary for lin}_ f; fn(x)dz =
n—0oo

fab f(z)dx.

Example 5.1.10 FEither

0 ifz=0
fale)=q 0 ifl<a<i

1 if0o<z<i

1
For n > — we have f,(x) = 0 therefore lirr+1 fn(z) = f(x) = 0. But this convergence is not
x n—- 400

uniform because : sup f,, = 1¥n, however
(0,1]

1
fol fo(z)dr = _ 0= fol f(z)dz that is to say, although fol fo(z)dr = fol f(z)dz, but the

convergence is not uniform.

Derivation

We would like to be able to give a theorem similar to that of continuity or that of integration

but unfortunately, this is not possible.

Theorem 5.1.7 Let (fn)n be a sequence of continuously differentiable functions on [a,b](f, €
Clla,b],R) satisfying the following properties :

a) the sequence (fn)n converges uniformly to g on [a,b].
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b) There exists a point xo € [a,b] such that the sequence (fn(xo)) converges to a limit I. Then
(fn)n converges uniformly to f on [a,b] with (f € C'[a,b],R) and we have Vz € [a,b]f(z) = g(z).

In other words : lirr_il_ falz) = < lir{% fn(x)> .

Proof. We have fn(z) = fu(z0)+ [, fn(t)dt. According to (3.1.24,a) we have nir{li-oo I fult)dt =

ffo g(t)dt uniformly on [a, b]. Thus (f,), converges uniformly to f defined by :

T

f(z) = limoo fn(xo) + /m g(t)dt =1 ~|—/ g(t)dt

n + To To

as f continuously differentiable, then f =g¢. m

5.2 Series of functions

5.2.1 Definitions and properties

Definition 5.2.1 Let (f,,)n be a sequence of functions with real or complex values defined on a

non-empty set I C R, let us associate with this sequence the sequence of functions (Sy,), defined
pry s q q

We call a series of functions on (I) with general term f,, the pair ((fn)n, (Sn)n). The sequence

(Sp)n is called n'" partial sum of the series of functions ((fn)n, (Sn)n) and will be denoted, > fn

or S1%0 froor fo+ fit e o+
Definition 5.2.2 The series Z;ﬁ% fr is called the remainder of order n of the series Z;ﬁ% fn-

Definition 5.2.3 We will say that Z;ﬁg fr is convergent in xy € I if the numerical series
S fr(wo) is convergent. We will say that Y425 fi. is convergent on I (or on a part A C 1)
if the series Z;ﬁ% fr(z) is convergent at any point x € I ( respectively x € A), in this case we

will say that the series Z;ﬁ% frx(x) is simply convergent on I (respectively on A).
We therefore have the following equivalences :

> fn converges at xg <= > fn(xo) converges <= (S, (x0)), converges

> fn converges on I <= Vz € I;) f, (v) converges <= (S,), converges on I.

Thus : The simple convergence of a series on I is equivalent to the simple convergence of the

sequence of its partial sums (Sy,), on I.
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Definition 5.2.4 Let Z:{i% n be a convergent series on I and (Sy), the sequence of its partial

sums. The function S : I — C defined by S = lini Sy, is called the sum of the series and is
n—-> oo

denoted S = 520 U,,.

Remark 5.2.1 The general theorems relating to numerical series remain true, with necessary

modifications, for series of functions.

5.2.2 Uniform convergence
Definition and example

Definition 5.2.5 Let ,0 n be a series of functions, we say that this series is uniformly
convergent on I if the sequence (Sy)n of partial sums is uniformly convergent where Sy(x) =
F20 fa(x). In case of convergence, the limit S such that Sy (z) = Y"1 fu(x) is called the sum

of the series.

Remark 5.2.2 Thus the uniform convergence of > fn on a set E means :

+o0
Z fa(z)] <€

k=n+1

Ve > 0;3dN; /Vn,Vex € E |ln> N —

Then the simple convergence is expressed by :

+oo
Z fu(x)| <€

Va € E;Ve > 0;3dN; /Vn, [n>N —
k=n+1

We will note : 32 na1 fn() =8 =S,

Example 5.2.1 Let fp(z) = a™. Then Vo # 1;S,(x) = Y p o fu(z) = 1+ 2+ ...+ 2" =

n+1__1 1
v T this series therefore simply converges in I =] — 1,41[ to the function S(z) = N
x — -z
However the convergence is not uniform on I =]—1,+1[. Indeed, lim (S,(x)—S(z)) = +o0, Vn,
<1

r—>1

5o ||Sn(x) — S(z)|| does not tend towards zero. On the other hand, in each interval [—9, 5] with

0 < d < 1, the convergence is uniform.

Abel’s criterion for uniform convergence

Theorem 5.2.1 We consider the series of general term functions f,. If f, is written in the

form Nz € I, fp(z) = en(z)gn(x) with :
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(1) Vz € I,e,(x) is decreasing towards 0.
(2) lim <sup |5n(:r)|> =0.
—+00 \ ger
(3) AM > 0 such that Vo € I;¥n e N: Y 7" gi(xz) < M.

Then the general term series f, converges uniformly on I.

Example 5.2.2 We show that this series converges uniformly on I, using the Abel criterion.

We pose

inx
e

We show that this series converges uniformly on I, using the Abel criterion. We set

Vo € Is; fn(x) = en(2)gn(x), with ey(z) = CEC and g, (x) = "7,
We have
(1) en(x) decreasing towards 0 because o €]0, 1].
(2) We have
Vn € N, sup |e (JU)\—L and lim | sup |ey(z)] | =
,meg " (n + 1)a n—+00 azeg "

(3) Srggi(@) = 1+ 7% 4 ()2 + ... + (€)™ which is a sum of a geometric series with
1 — (eiyntl
1—eix
e # 1,Vx € Iy. We must find an increase of |Y g gi(x)| which is independent of the variable

first term go(z) = 1 and reason q = €%, we deduce that, > 1, gi(z) = because

x and n, since !e”(”ﬂ)‘ =1 We have

1+‘em n+1)’ )

— ezx’ — |1_eiz|'

Zgz

We have
1—¢| =\/(1—cosz)2+sinz=+1—2cosz+cos?z +sin?x
=2 —2cosx = ,/4sin? —2\sm —|
0
—2s1n§ because 0 < 5 g —§<7T
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Second case :

T T
The sine function is decreasing on [5, 7T:| , which allows us to deduce : sin 5 > sin(m— 5) > sin,
. T )
or we have Sin(ﬂ-_i) = sin 7 Thus we obtain : |1 —e™| = 2sin — > 2sin —, since the inequalities
1

are the same in both cases, we deduce that : Y7 gi(z) < — 5 =5 = M. Then according

2sin — sin —

to Abel’s criterion, we deduce that the series of functions converges uniformly on I.

5.2.3 Normal convergence

Definition 5.2.6 Let Y% fu, fa(z) : I — K (K =R or C) be a series of functions, we say
that this series is normally convergent on I if the numerical series : > || full where || ful| =
n

sup | fn(z)|, is convergent.
zel

Proposition 5.2.1 Let fi, fa: I — K, then || fi + fal| < [|f1ll + || f2]] (triangular inequality).

Theorem 5.2.2 [f the series Z:ﬁ% fn converges normally on I ; Then it is uniformly convergent

on I.

corollary 5.2.1 Let Z:{i‘a n; fn i I — K be a series of functions; if there exists a convergent
positive-term numerical series Y 120 an, such that : ¥n,¥x € I,|fu(z)| < an, then the series

+90 fu is normally convergent on I.

: 2 2 1
Example 5.2.3 Let Y12 f, such that; fn(z) = w, we have Yz € R; | fn(z)| < 3

And we have a, = we know that E;ﬁ% an 1s convergent, therefore the series Z:i% fn is

n2

normally convergent, therefore uniformly convergent in R.

Remark 5.2.3 Normal convergence is stronger than uniform convergence. There exist uni-

formly convergent series which do not converge normally.

5.2.4 Uniform convergence and properties of a series of functions
Continuity

Theorem 5.2.3 Let Z:{i‘a ns fn(z) : I — K be a series of functions uniformly convergent on

1. If all functions f, are continuous in xg € I, the sum S of the series is continuous in xg € I.
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corollary 5.2.2 If all functions f, are continuous on I and if Z:i% n 18 uniformly convergent

on I, then the sum is continuous on I.

Remark 5.2.4 The hypotheses are those of Theorem (3.2.16), we can therefore write :
+oo +oo +oo
U SICED BRUEED WAL
n= n= n=

Generalization : If Z:ﬁ% frn is uniformly convergent on I, and if the finite limit lim f,(x) =
T—x

an(wo € I) exists whatever n, the series ¥ a,, is convergent and we have :

+oo +o0o +o00
Jim 37 fu@) =0 lim fu(@) + Y au(eo):
n=0 n=0 n=0

Remark 5.2.5 This result is often used to demonstrate that a given series is not uniformly

convergent by demonstrating that the sum function Sy (x) is discontinuous at a point.

Example 5.2.4 Study the uniform convergence of the series :

S A v
1+22 (14222 777 (1+22)"
$2
We have Z:{i% m, suppose x© # 0, then the series is a geometric series of ratio = and
first term 2. Then S(z) = 22 T = 1+22%, Ifz =0, 5,(0) = 0, hence lim S, (0) = S(0),
1+ x—0
1+ 22

on the other hand we have limOS(:C) =1+ 5(0) so S is discontinuous at the point x = 0. So

the convergence is not uniform.

Integration

Theorem 5.2.4 Let :Lri% ns fn L = [a,b] — K be a series of functions uniformly convergent

on [a,b]. If the functions f, are integrable in |a,b], then it is the same for the sum of the series

b b [+ +oo  .p
/aS(x)d:c:/a <n§fn(x)> dm:;/a fa(z)dz.

Furthermore, the series Y, 2% f: fn(z)dz converges uniformly on [a,b] towards [ S(t)dt.

and we have,

1 1
Example 5.2.5 We have 5z ::6(—1)"3:” and — = :{i%(—l)”x%, converge uniformly
x x

on each interval [a,b] C] — 1, 1], we can therefore integrate them term by term from 0 to x with
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|z| < 1. So,

+“’(_J)n$n+l +“’(_1)nxn

S D P D R

~+oo (_1)nm2n+1
arctanx = -
2n+1
n=0

Derivation

Theorem 5.2.5 Let :L:% n, fn: I — K be a series of functions whose general term f, are

continuously differentiable on [a,b](f, € C'([a,b],K). If
(a) S°120 fn is convergent at a point zo C [a,b],

(b) S () is uniformly convergent on [a,b]. Then, the series S fo (@) is uniformly

convergent on [a,b] and we haveS’z( s n)/: oo fu ().
Example 5.2.6 Let S5 £ such that fo(z) = ——— T = [0,1]; we have |fu(2)] < =
xample 5.2.6 Let > "% fn such that fy(z = waray =0 ; we have |fa(2)] < -3

1 .
because x™ < 1 therefore 2—3 is convergent, We have normal convergence hence uniform
n

convergence therefore simple convergence on [0,1]. Is the sum derivable ?

(i) The functions f, are differentiable with continuous derivatives on [0,1]. Indeed; fn(z) =
mn—l

n?(1+ zm)?

(ii) The series Y20 f,, converges at least at a point of [0,1].

wnfl

— | <
n?(1+4am)?| —

(iii) The series of derivatives converges uniformly on [0,1]. Indeed ;

fn($)‘ =

—5. Then the sum is therefore differentiable on [0,1] and we have : For
n

, +o0 ' +o0 i
ze0,1],S(z) = (Z fn@:)) = ful2).
n=0 n=0
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Chapitre 6

ENTIGER SERIES

[ I \he theory of integer series allows the majority of usual functions to be expressed as
sums of series. We say that an analytic function is a series which can be expressed
locally as a convergent integer series. This makes it possible to demonstrate properties of these

functions, to calculate complicated sums and also to solve differential equations.

6.1 Definitions and properties

Definition 6.1.1 An integer series is a series of functions with Uy, (z) = anz"™ where a,, € C and
z € C. ay, is the coefficient of order n, ag the constant term. By convention, we set 2° = 1¥z € C.

If Uy (x) = apx™ where a, € C and x € R, we speak of an integer series with a real variable.

Proposition 6.1.1 - If there exists R € [0,4+o00[ such that |z| < R, the general term series

Un(2) = anz™ converges.
- If |z| > R, the series diverges.

- Moreover 0 < |r| < R, the series converges normally on the closed disk D, = {z € C/|z| < r}.

Remark 6.1.1 We consider the entire series of general term U, (x) = apz"”

- If there exists R € [0, +oo[U{+00},) that is to say that R can take the infinite value, such that

x €] — R, +R|[, the general term series Uy (z) = anx™ converges.
- If |x| > R, the series diverges roughly.

- For normal convergence, it is enough to take r € [0, R] and x € [—r, +r].

Definition 6.1.2 R is the radius of convergence of the series. D, = {z € C/|z| < r} is the
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convergence disk. By convention, we have Dy = ) and D1 = C. In the real case | — R, R| is

the convergence interval.

1
Proposition 6.1.2 - if hm {lan| = L € [0, +00[ then R = T

-4f  lim

QAn 41
n—s+oo | n

= L € [0,400[ then R = f

Example 6.1.1 Consider the entire series of general term Uy (z) = nlz", with z # 0. To find
an+1(z)

a”(z)

out if this series converges, we use the D’Alembert criterion. Thus, we have :

(n+ 1)1z

= (n+1)z]. Or lim (n+ 1)|z| = 4oo therefore for all z # 0 the series
nlzm n—+00

diverges, we say that the radius of convergence of this entire series is 0.

n

Example 6.1.2 Let the entire series of general term U,(z) = Z—a, with a € R. We have
n
an+1(z)

a”(z)

nOL

(nLH) |z| — |z|. So the convergence radius is R =1, (|z| < 1).
n—--+40o0

n
Example 6.1.3 Let the entire series of general term Uy(z) = % We have {/|U,(2)| =
n
% > 0; Then the radius of convergence is R = +o00 (convergence for all z).
n3 n—-+oo

2nm
(2T
Example 6.1.4 Let the entire series of general term Uy(z) = ansm( 3 6)2", with (a > 1).
2n7r 7T
in(—— 2
We have {/|Upn(z)| = @ 5 |z|. When n € N the function n — sm(% + 7(;>
. Then R=a"2.

takes the

Nz\»—t

a

1 1
values 3 and —1, Now we have sup {‘/|U = a2 |z|. so a2\z| < —

1
az

Remark 6.1.2 (Study on the edge of the convergence disk) For an entire series En 0 an2"
whose radius of convergence R is distinct from 0 and +o0, la Proposition (4.1.5) eaves in doubt,
the nature of the entire series at a point z on the edge of the convergence disk, that is to say for

z € C such that z = R. All cases can occur : absolute convergence, semi-convergence, divergence.
For example

(1) Up(z) = n®2™ with (a € RY), R = 1. We have |Uy,(2)| = n®, for all z such that |z| = 1
does not tend to 0 when n tends to co. The series diverges at any point from the edge of the

convergence disk.

n

1
(2) Un(z) = Z—a with (o € RY), R = 1. If a > 1, we notice that |Uy(2)| = — for |2| the
n n

‘ ‘ 1Y . ‘ o
Riemann series <a is convergent, therefore the entire series is absolutely convergent at every
n

point on the edge of the convergence disk. If 0 < a < 1, let us study the cases z = £1, pour
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1
z = 1 we have the divergent Riemann series (a> If z = —1 we have the alternating series
n

(%)
o convergent.

n

6.2 Operations on entire series

We consider the entire series of general term U, (z) = a,2™ and V,,(z) = b, 2" with convergence

radius R, and Ry respectively.

— If we consider the entire series of general term Wy, (z) = cp2" = Up(z) + Vi (2) = (an + by)2"™.
Then R. > min(R,, Rp), moreover if R, # Ry, R. = min(R,, Rp).
~ If we consider the entire series of general term W, (z) = d,2" = S0 U,(2) + Vy_p(2) =

too (akzk) (bn,kzn_k) = 2" Y " (a — kb,_},), then R, > min(R,, Ry)

Example 6.2.1 We consider the series S1 = :i% z" and Sy = :i% —2z", We have Uy (z) =

2" Vi(z) = =2, (Vn,an, = 1,b, = —1), then Ry, = 1 and R, = 1. So S = Y. 7% ¢,2" =

n=0

o (@n + b))z =30 (14 (—1))2" = 0, has convergence radius R, = +00 > min(Ry, Ry).

n=0

Example 6.2.2 We consider the series S; = :{i% Z2" Ry, = 1. We consider the entire series
defined as follows : by = 1,b; = —1, and Vn > 2,b, = 0, we deduce that : So = 1 — z which
has convergence radius Ry = +o00o. If we calculate S = S1 x Sy we obtain Wy, (z) = dp2" =
2" :i%(akbn,k), we deduces that : dy = agbg = 1,d1 = agby + a1bg = —14+ 1 = 0 and therefore

Vn>1,d,=0,R; = +4o0.

6.3 Derivation and integration of integer series

6.3.1 Properties

Theorem 6.3.1 Let 370 a,2" be an integer series with sum f(z). The function z — f(z) is

continuous in the convergence disk of the series.

Proposition 6.3.1 Let the entire series be defined by : S(x) = :{i% anx™ such that x €
| = R,+R|[, where R is the radius of convergence. If the function S is CT> then | — R,+R|
alors S(zx) = SR naza™t = Y210 (n+ 1) any1a™. So, this new series also has a radius of

convergence R.
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corollary 6.3.1 Let the entire series be defined by : S(x) = '8 ana™ such that x €]— R, +R],
n+1

where R is the radius of convergence. We set T (z) = Z:g an_lﬁ— = :Lro% an ° 1

n

of convergence of this series is also equal to R, and Vx €] — R, +R|[,T(z) = S(x).

. The radius

6.3.2 Applications

1
1. We know the geometric series Vo €] — 1, +1[, > "% 2" = ——, and we know an antideri-
—x

1 n+1
dx = —In(1 —z). The primitive of Z:ﬁ% 2™ is equal to 319 ° 1 Then
—x n

vative f_ll :

we deduce that In(1 —x) = — Z+°° —. What’s more

“+o00 n —+o0

n— x"
=> (-1) 1;.

=1 n=1

Ve el —1,+1In(1+2) =In(1 — (1 — z)

2. What’s more
Vz €] —1,+1[, arctan(x) = é[ln(l +z) —In(1 — z)]

n .

+o00 " 400 2" +00 ; \n—1
arctan(z) = % [Z(_l)n—ln n Z n] _ [Z (1)2-1-1

n=1 n=1 n=1
For all odd n we have n =2p+ 1,Vp € N
too [ 1y(2p+1)—1 2p+1 T 20+l
(—1)Cr +1z
t = E Ve el —1,+1
arctan(z) p:(][ 2 2p+1 2 +1’ v € 1.

1
3. Consider the function arctanx which is the primitive of 1522 which vanishes at 0. To
T

obtain its expansion into an integer series Vo €] — 1,+1[ we use the previous result , we

obtain
—+o00

1 1
— — —1)" 2n
1+22 1+ (—22) nz;)< )le

By integrating this series with arctan (0 = 0 to determine the constant, we obtain

too 20+l
V. —-1,+1 t = 1" .
x €] — 1,+1[,arctan = nZ:;)( ) 1

1
4. We seek the expansion in integer series of the function f(z) = ——————, since 1 —3x+
) ) ) 1 — 3z + 222
222 = 2(x — 1)(z — 5), then f(x) = ] + 7> but we have
x p—
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1 1 2 2
z—1  z—-1 a0 " et .~ 1 :_1—2332_2 noo(22)", with —1 <
(z — 5) 2(x — 5)
z<1. S0 f(z) ==Y 0 am =230 (22)" = S0 (—1 — 272" we set a,, = (—1 — 27F1),
so f(z) =31®a,2", R = 3
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Chapitre 7

FOURIER SERIES

I Fourier series are series of functions of a particular type, which are used to study per-
iodic functions. The idea is to express any 2m-periodic function as a linear combination
of simple 27-periodic functions, of the form cos(nz) or sin(nx), with n € N. This "linear com-

bination" will, in general, be an infinite sum, that is to say a series :

7.1 Definitions et proprieties

Definition 7.1.1 (trigonometric series) We call a trigonometric series a series of functions
> fn whose general term is of the form f,(z) = a, cos(nz) + by, sin(nx) with x € R and, for all

ne€N,a, € C and b, € C.

Propretie 7.1.1 (Convergence 1) If Y a, and > b, converge absolutely, then the trigono-

metric series Y (ay cos(nzx) + by sin(nz)) converges normally on R.

Propretie 7.1.2 (Convergence 2) If the sequences (ap)nen and (by)nen are real, decreasing,
and tend towards 0 then, for all o € R/277Z fized Y (a, cos(nxzg) + by sin(nxzg)) converges.
Moreover for all € > 0, Y (a, cos(nz) + b, sin(nx)) converges uniformly on each interval of the

form [2nm 4 €,2(n + 1)we] with n € Z.
The proof of this property is an application of the uniform Abel rule. We then have :

Propretie 7.1.3 (Complex writing) Any trigonometric series :

Z (ap cos(nx) + by, sin(nz))

neN

Dr: Fatima OUAARUniversity of 31
Mohamed Kheidar, Biskra



can be rewritten in the form Y ., cn€™ with cg = ag and Yn € N, ¢, =
an + ib,

5 Then, ¥Yn € N,a,, = ¢, + c—p, and bn =i(c, — c_p).

When a trigonometric series converges uniformly on [—m, 7], we can find its coefficients according

to its sum

Propretie 7.1.4 (Evaluation of the coefficients) Let > (a, cos(nx) + by, sin(nz)) be a tri-

gonometric series uniformly convergent on [—m,m]. Note,

S(z) = Z (an cos(nz) + by, sin(nx)),

neN

- 1
for x € R. Then ay = 2—f_7r S(x)dz and for all n € N*, a, = = [7_S(z)cos(nz)dz and
m 7r

by, = 1 J7_S(z) sin(nz)da.
™

Remark 7.1.1 1. S is an R — C function. We therefore have here integrals of functions R —
C to which we must give meaning. By definition, for f : R — C, ff f(x)dx = f: Re(f(x))dx +
i [P Tm(f(x))dz.

2. We have no expression for by. In fact, since by is the coefficient of sin(0xz) = 0, it has no

importance, we can choose for example by = 0.
If the trigonometric series is given by its complex writing, the expressions simplify :

Propretie 7.1.5 (Trigo-complexe serie ) Let ) _, cn €™ be a trigonometric series written
in complex form which converges uniformly on [—m;w|. Let us note, for all x € R, S(x) =

n=—oo N

i 1 )
+00 e e Then fo?” alln € Z, Cp = 27 ffﬂ S(.%')e*mmdx_
T

Remark 7.1.2 Since cos(nx) and sin(nz) are 2w-periodic, so S(x) is 2m-periodic. Because of
1 . .

this, we can change the integration interval : for allaw € R, for alln € Z, ¢, = or f(j” S(z)e "™ dz.
T

The same is true for a, and b,.

Now that we have studied trigonometric series, we can return to the initial program : given any

2m-periodic function, can we rewrite it as the sum of a trigonometric series ?

Definition 7.1.2 (Fourier series) Let f is 2m-periodic, Its Fourier series is by definition the

I ox
trigonometric series Y,y (an cos(nx) + b, sin(nx)) defined by ag = o I f(x)dz and for all
jis
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1 . 1 . . .
neNa, =— [ f(z)cos(nz)dr and b, = — ["_ f(z)sin(nz)dz, if these integrals are defined.
0 T

Or, equivalently, it is the trigonometric series written in complex form Y. _, c,e™ where, for

nez
1 .
alln € Z,c, = Py ffﬂ f(z)e™™*dx. The coefficients a,, and b, (or, equivalently c,) are called

Fourier coefficients of f.

Propretie 7.1.6 (Parity) 1. Since f is 2mw-periodic function, we can change the integration

interval to [a, o+ 27|, for all o € R.
2. If f is even, for alln € N, b, = 0.

3. If f is odd, for alln € Nya, = 0.

Analogously to what happens when we develop a function in integer series, given a function f

2B-periodic whose Fourier coefficients are defined, two questions arise :

1. Does the Fourier series of f converge ?

2. If yes, does it converge to f f 7

Unfortunately, as with entire series, the answer may be no to each of these questions. There is a
whole theory describing the convergence of the Fourier series under various assumptions about

f. Among this theory, we will retain for this course the following result :

Theorem 7.1.1 (Dirichlet Jordan) Let f be a 2m-periodic function continuous on [—m, ]
sexcept possibly at a finite number of points. We assume that at these points of discontinuity, f
admits a finite right limit and a left limit. Finally, we suppose that f admits at every point of
[—7, 7] a right derivative and a left derivative (finite). Then for all x € R, the Fourier series of
f is convergent at x and has the sum % < lim f(y)+ lim f(y)> . In particular, at any point

y—zt Yy—z—

x where fis continuous, the sum of its Fourier series is f(x).

It is convenient to reinterpret the theory of Fourier series using the notions of vector space
and dot product. We can then retain certain aspects of the Fourier series by keeping in mind
the analogy with the simple vector space that is R2, which is equipped with the scalar product
Z.y = x1Yy1+x2ys. This analogy is written in a more natural way when we use the complex writing
of Fourier series. The space which, for Fourier series, plays the role of the vector space R? is
the set of periodic functions F = {f : R — C; 2 — and whose squareis integrable on [—m, 7]} .
We can define a product on F (a function F x F — C) which will play the role of the scalar

product of R? :
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Definition 7.1.3 (Scalar product) For f,g € F, we call the scalar product of f and g, and
we note (f,g) the complex number (f,g9) = — f f(z)g(z)dx where g(x) denotes the conjugate

complex number of g(x).
When we have a scalar product, we can define a norm :

Definition 7.1.4 (Norm) Let f € F. We call the norm of f and we note ||f|| the positive real
number || f[| = /(f, f)-

- —

Remark 7.1.3 The norm of R? is constructed this way from the scalar product : ||Z|| = VZ.Z =

2 2
\ x] + 5.

Propretie 7.1.7 (Orthonormal basis) The (infinite) set of functions {:L‘ = Z} forms
an orthonormal basis (infinite) of F provided with the scalar product. Indeed we have already

seen that for all ng € Z,

1 [T . lifn=ng
27 £ o= IN0T (] — ’
7T 0 otherwise

which translates to :

(emor, ) = ,
0 otherwise

which is the definition of an orthonormal family. The fact that this family contains enough

elements to be considered a base requires further development :

The difference between R? and F is that an orthonormal basis of R? contains only 2 ele-
ments while an orthonormal basis of F' contains infinitely many elements. We say that F is
of infinite dimension. By analogy with R?, we say that we have decomposed f € F accor-
ding to the orthonormal basis {x = e € Z} if we found coefficients ¢, € Z such that

T\ = 0. The previous proposition asserts that this decomposition

hm Hf Nchne

is poss1ble for all f € F. Then we get the following interpretation.
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7.2 Geometric interpretation of Fourier series

Let f € F. Its Fourier series is nothing other than its decomposition according to the orthonormal
basis {x — e n e Z}. This interpretation allows us to retain the expression of the Fourier

coefficients of f :

Propretie 7.2.1 (Orthogonal projection) Let f € F. For all n € Z its Fourier coefficient

) ) 1 )
cn, s the orthogonal projection of f on €™, i.e. ¢, = (f(x),e"") = o T flz)e ™ da.
T

Finally, this interpretation makes it possible to connect the norm of f with its Fourier coeffi-

cients :

Theorem 7.2.1 (Parseval-Bessel) Let f € F and {cp,n € Z} be its Fourier coefficients in
complex writing, {(an,bn),n € N} be its Fourier coefficients in real writing. Then the norm of f

verifies :

1. Bessel inegality : for all N € N,

T N
191 = 0 =55 | @ F@de= 3 Jef
TJer n=—N
N

1
= ]a0|2 +5 Z(‘anP + ‘bn|2)-

2 n=1
2. Parseval egality :
2 = 2 2 IR 2 2
AP = (£ 1) = D leal® = laol* + §Z(Ian\ + [bn|”).
n=-—oo n=1
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