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Chapitre 4

NUMERICAL SERIES

The notion of sequence is closely linked to that of "series", that is to say linked to the

problem of the summation of an in�nity of terms. It was the Greeks in the 5th century

BC who began to glimpse the notion of in�nity. It was only in the 16th century that in�nity

took on its full meaning. The notion of series comes from the fact that for an in�nite list of real

numbers, that is to say for a sequence (Un)n2N, we pose the problem of considering "the sum" of

all the elements of this sequence of numbers : U0+U1+ :::::+Un+ ::::How can we give meaning

to a sum of an in�nite number of terms.

4.1 General information on numerical series

4.1.1 De�nitions

De�nition 4.1.1 To any sequence (Un)n2N of real or complex numbers, it is possible to associate

a sequence (Sn)n2N de�ned by : 8n 2 N; Sn =
Pn
k=0 Uk. Conversely, to any sequence (Sn)n2N, it

is possible to associate a sequence (Un)n2N de�ned by : U0 = Sl and 8n 2 N; Un+1 = Sn+1�Sn.

We call series the sequence (Sn)n2N and we note :
P
n2N Un or by

P
n Un or by

P
Un.

De�nition 4.1.2 Let (Un)n2N be a sequence of real or complex numbers. The sum Sn =
Pn
k=0 Uk

is called the partial sum of rank n of the series
P
Un.

- The sequence (Sn)n2N is called the sequence of partial sums of the series
P
Un:

- The sequence (Un)n2N is called a sequence associated with the series
P
Un. Un is said to be a

general term of the series
P
Un.
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4.1.2 Convergence of a series

De�nition 4.1.3 - If the sequence of partial sums (Sn)n2N of a series
P
Un is convergent with

�nite limit S, we will say that the series is convergent and we will note
P
n2N Un = S.

- If the sequence (Sn)n2N tends towards +1 or towards �1, we will say that the series is

divergent of the �rst kind and we will note
P
n2N Un = �1:

- If the sequence (Sn)n2N does not converge towards a �nite limit, nor towards �1, owe will

say that the series is divergent of the second kind.

Remark 4.1.1 Any �nite series is convergent since the sequence of partial sums is constant

from a certain rank. Sn = U0 + U1 + ::::::+ Up 8n � p:

Remark 4.1.2 (a) We say that
P
n2N Un and

P
n�n0 Un, where n 2 N, are of the same nature.

(b) In the case where the series is convergent, the symbol S =
P
n2N Un designates both the

series and also the result of this series.

(c) The series
P
n2N Un converges to S if : 8� > 0;9N0 2 N=; n � N0 =) jS � Snj � �:

We use the de�nition of the convergence of a sequence because the partial sum (Sn)n2N is none

other than a sequence, and we can write 8� > 0;9N0 2 N=; n � N0 =) j
P+1
k=n j � �:

Remark 4.1.3 The sequence of partial sums (Sn) can be divergent by not having a limit when

n �!1 or by not having a �nite limit for example (Sn) = exp (in) and Sn = lnn.

The nature of a series (convergence or divergence) does not depend on the �rst terms of the

series, which means that the series
P
n>0 un and

P
n>N un converge (or diverge) at the same

time.

Proposition 4.1.1 For the series
P
n2N Un to be convergent, it is necessary that the associated

sequence (Un)n2N be convergent with zero limit. However, this condition is not su¢ cient, there

exist divergent series whose associated sequence (Un)n2N is convergent to 0.

Example 4.1.1 We consider the series
P
n>0 e

1
n , we know that lim

n�!+1
e
1
n = 1 6= 0, therefore

the given series is divergent.

De�nition 4.1.4 a) We call the sum of two numerical series
P
n2N Un et

P
n2N Vn, the general

term series 8n 2 N;Wn = Un + Vn from where
P
n2NWn =

P
n2N Un +

P
n2N Vn:
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b) We call multiplication of a numerical series
P
n2N Un by a non-zero scalar �, (� 2 R� or

� 2 C�) the general term series 8n 2 N;Wn = �Un hence
P
n2NWn =

P
n2N (�Un).

c) We call the product of two series (Un)n2N and (Vn)n2N the general term series ; 8n 2 N;Wn =Pn
k=0 UkVn�k hence

P
n2NWn =

P
n2N (

Pn
k=0 UkVn�k) :

Proposition 4.1.2 (Vector space of convergent series) Let (Un)n2N et (Vn)n2N be two real

sequences. If the series
P
n2N Un and

P
n2N Vn are convergent with respective results U and V ,

then :

- The series
P
n2N (Un + Vn) is convergent with sum U + V:

- The series
P
n2N (�Un + �Vn) with (�; � 2 R or C) is convergent with sum �U + �V .

Consequence : We note that the complex series
P
n2N(an+ ibn) converges if and only if the two

real series
P
n2N an and

P
n2N bn converge. Then

P
n2N(an + ibn) =

P
n2N an + i

P
n2N bn:

Proposition 4.1.3 - The sum of two series, one of which is convergent and the other divergent

of the �rst kind, is divergent of the �rst kind.

- The sum of two series, one of which is convergent and the other is divergent of the second

kind, is divergent of the second kind.

- The series
P
n2N �Un with (� 2 R or C) is of the same nature as the series

P
n2N Un.

- The product of two convergent series is not necessarily a convergent series.

4.1.3 Séries de Cauchy

Proposition 4.1.4 A series
P
n2N Un is convergent if and only if

8� > 0;9N0 2 N; =p � n � N0 =) j
pX

k=n

Ukj � �

or :

8� > 0;8p > 0;9N0 2 N; =n � N0 =) j
n+pX
k=n

Ukj � �

4.2 Positive term series

The interest in studying series with positive terms (i.e. with terms in R+) is that the sequence

(Sn)n2N of partial sums de�ned by its general term : 8n 2 N;
Pn
k=0 Uk is real and increasing.
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Indeed ; Sn+1 � Sn =
Pn+1
k=0 Uk �

Pn
k=0 Uk = Uk = Un � 0:

Proposition 4.2.1 A series with positive terms
P
n2N Un is either convergent or divergent of

the �rst kind (of limit +1). Furthermore, for this series to be convergent, it is necessary and

su¢ cient that the sequence (Sn)n2N of partial sums de�ned by its general term : 8n 2 N; Sn =Pn
k=0 Uk is bounded.

4.2.1 Comparison criterion

Proposition 4.2.2 Let
P
n2N Un and

P
n2N Vn be two series with positive terms, satisfying,

8n 2 N; Un � Vn:

a) If
P
n2N Vn, is convergent, then

P
n2N Un is convergent.

b) If
P
n2N Un, is divergent of the �rst kind, then

P
n2N Vn is divergent of the �rst kind.

Proof. a) If we have Un � Vn;8n 2 N, we also have : U0+U1+::::+Un = Sn � V0+V1+:::+Vn =
�Sn �

P+1
n=0 Vn =

�S: If
P
n2N Vn converges, then �S exists and

P
n2N Un is increased and therefore

convergent.

b) obvious.

Proposition 4.2.3 (Use of equivalences) Let
P
n2N Un and

P
n2N Vn be two series with po-

sitive terms. If Un �
+1

Vn then
P
n2N Un and

P
n2N Vn are of the same nature.

Example 4.2.1 (Harmonic series) The harmonic series is given by its general term Un =
1

n
.

The general term tends towards zero, but the series diverges.

Example 4.2.2 Un =
1

n cos2 n
and Vn =

1

n
we notice that Un � Vn;8n 2 N therefore

P
n2N Vn

diverges hence the divergence of
P
n2N Un.

Example 4.2.3 Un = arc sin
2n

4n2 + 1
; V n =

2n

4n2 + 1
. We have Un � Vn and we set �Vn =

1

2n

then Vn � �Vn we see that
P
n2N

�Vn diverges, so
P
n2N Vn diverges and �nally

P
n2N Un diverges.

Example 4.2.4 Un =
sin2 n

n2
: On a Un <

1

n2
= V n; we know that

P
n2N Vn converges (Riemann

serie�s ) so
P
n2N Un converges.

Example 4.2.5 Un =
cosh 1n
n

, and Vn =
1

n
: We see that Un � Vn, but

P
n2N Vn diverges,

therefore
P
n2N Un diverges.
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4.2.2 Cauchy criterion

Proposition 4.2.4 Let
P
n2N Un be a series with positive terms. We consider lim

n�!+1
n
p
Un = l

where l 2 R+ [ f+1g:

a) If 0 � l � 1, then the series
P
n2N Un is convergent.

b) If l > 1 then the series
P
n2N Un is convergent.

c) If l = 1 we cannot conclude

We note that if lim
n�!+1

n
p
Un

>1�! 1, then we can conclude that
P
n2N Un diverges.

Example 4.2.6 Let the series be
P
n2N Un =

P
n2N

�
n+ a

n+ b

�n2
. We have n

p
Un =

�
n+ a

n+ b

�n
= 

1 + a
n

1 + b
n

!n
�! ea

eb
= ea�b = l

Discussion : If b > a, then l < 1, the series converges.

If b < a, then l > 1, the series diverges.

If a = b, then Un = 19 0 the series diverges.

4.2.3 D�Alembert criterion

Lemma 4.2.1 Let
P
n2N Un and

P
n2N Vn be two real series with positive terms. If we have

8n 2 N; Un+1
Un

� Vn+1
Vn

, such that ; 9� 2 R, then 8n 2 N; Un � �Vn.

Theorem 4.2.1 Let
P
n2N Un and

P
n2N Vn be two real series with positive term such that :

lim
n�!+1

Un
Vn

= l 6= 0: Then the two series converge or diverge at the same time (of the same

nature).

Theorem 4.2.2 Let
P
n2N Un be a series with positive terms. We consider the series

P
n2N Vn

de�ned such that, 8n 2 N; Vn =
Un+1
Un

moreover we consider lim
n�!+1

Vn = lim
n�!+1

Un+1
Un

= l où

l 2 R+ [ f+1g:

a) If 0l1, then the series
P
n2N Un is convergent.

b) If l > 1 then the series
P
n2N Un is divergent.

c) If l = 1 we cannot conclude.

We assume that lim
n�!+1

Un+1
Un

>1�! 1, then we can conclude that
P
n2N Un diverges.
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Example 4.2.7 Let the series
P
n�1

n3

n!
. We set 8n � 1; Un =

n3

n!
, then lim

n�!+1
Un+1
Un

=

lim
n�!+1

(n+ 1)3

(n+ 1)!
:
n!

n3
= 0 < 1. The series converges.

Proposition 4.2.5 Let (Un)n2N be a sequence of positive real numbers. Suppose that lim
n�!+1

n
p
Un =

l; lim
n�!+1

Un+1
Un

= �l, then l = �l:

4.2.4 Series, Integrals and Riemann criterion

Proposition 4.2.6 Let f be a decreasing function, de�ned from R+ into R+ such that : Un =

f(n). Then the series
P
n2N Un and

R +1
0 f(x)dx are of the same nature.

De�nition 4.2.1 We call a Riemann series a series of the form
P
n>1

1

na
where a 2 R�+:

Proposition 4.2.7 a) If 0 < a < 1, the Riemann series diverges.

b) If a > 1, the Riemann series converges.

4.3 Series with any terms

In this paragraph we will study the case of series
P
n2N Un where Un s complex or real of any

sign.

4.3.1 De�nition et proposition

De�nition 4.3.1 We will say that the general term series Un 2 C is absolutely convergent if

the series with positive terms of general term jUnj converges.

Proposition 4.3.1 Any absolutely convergent series is convergent.

Remark 4.3.1 There exist convergent series which are not absolutely convergent.

Example 4.3.1 Let
P
n2N Un such that U2n�1 =

1

2n
and U2n =

�1
2n

with n > 1. Then jUnj �
1

n

therefore
P
n2N jUnj diverges, the series

P
n2N Un is not absolutely convergent. However, S2n = 0

and S2n�1 =
1

2n
therefore the series

P
n2N Un cconverges with zero sum. We will say that a series

which converges without being absolutely convergent is semi-convergent.
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4.3.2 Abel�s Sum

Theorem 4.3.1 Let
P
n2N Un be a series whose general term, real or complex, is written in the

form Un = anbn ; Suppose that :

1) The sequence (an)n2N is in positive terms decreasing and tends to 0 when n �! +1:

2) There exists M 2 R such that 8x 2 Nj
Pn
k=1 bkj �M:

Then the series
P
n2N Un is convergent.

4.3.3 Alternating series

De�nition 4.3.2 We call an alternating series a numerical series whose general term Un is of

the form Un = (�1)nVn, where (Vn)n2N denotes a sequence of constant sign.

Example 4.3.2 The series
P1
n=0

(�1)n
n+ 1

is an alternating series. It is called alternating har-

monic series.

Theorem 4.3.2 If the sequence (Vn)n2N; Vn > 0, is decreasing and converges to zero, then the

series
P
n2N Un =

P
n2N(�1)nVn is convergent and its sum S satis�es the inequality : S2p+1 �

S � S2p:

11
Mohamed Kheidar, Biskra
Dr: Fatima OUAARUniversity of 



Chapitre 5

SEQUENCES AND SERIES OF

FUNCTIONS

Many functions appear as boundaries of other simpler functions. This is the case, for

example, of the exponential function, which can be de�ned by one of the following

two formulas. ex = lim
n�!+1

(1 + xn)n ou ex =
P+1
n=0

xn

n!
:

This is also the case for more theoretical problems, such as when we construct solutions to

equations (for example di¤erential), we often construct by induction towards an approximate

solution which converge towards an exact solution.

5.1 Function suites

5.1.1 General notions

In the following, K designates one of the �elds R or C. Let E be a K-vector space and I be any

set, the set FE(I) of maps de�ned on I, with values in E, is equipped with the following two

scalar operations : addition (f; g) �! f +g and multiplication by a scalar (�; f) �! �f , de�ned

by : if f; g 2FE(I) and � 2 K; (f + g)(x) = f(x) + g(x) and (�f)(x) = �f(x):(FE(I);+;�) is a

K-vector space.

De�nition 5.1.1 A sequence in FE(I) is a map of N in FE(I) which associates with each

natural number n a function fn. It is noted (fn)n>0 or simply (fn)n:

Remark 5.1.1 � (fn+n0)n is also denoted (fn)n>n0 :
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� In a sequence (fn)n, the fn are assumed to have the same de�nition set.

� The sequence (fn)n can be seen as a numerical sequence (fn(x))n dependent on the parameter

x, traversing a given set.

5.1.2 Simple convergence

The notion of convergence of a sequence of real or complex numbers naturally leads to that of

convergence at each point for the sequences of functions de�ned as follows.

De�nition 5.1.2 A sequence (fn)n of maps fn : I �! K is said to simply converge on I if

there exists a map f : I �! K such that 8x 2 I; lim
n�!+1

fn(x) = f(x)

- f is called simple limit of (fn)n

- If f exists it is unique.

We write :

�
8x 2 I; lim

n�!+1
fn(x) = f(x)

�
() (8x 2 I;8� > 0;9N(x; �)=n � N) =) jfn(x)� f(x)j � �) :

Remark 5.1.2 It should be noted that N depends on x and �.

Example 5.1.1 A numerical sequence is a very particular case of sequences of functions, here

the functions are constants.

Example 5.1.2 Let I =]0; 1[ and K = R; fn(x) =
1

(n+ 1)x
. Then lim

n�!+1
fn(x) = f(x) =

0;8x 2 I:

Example 5.1.3 We consider 8x 2 R; fn(x) =
�
1 +

x

n

�n
= en ln(1+

x
n). Then 8x 2 R; fn(x) =

ex:

Theorem 5.1.1 Let (fn)n et (gn)n two sequences in FE(I) simply convergent to f and g res-

pectively, and � 2 K, Then

1. The sequence (fn + gn)n simply converges to f + g.

2. The sequence (�fn)n simply converges to �f .

3. The sequence (fngn)n simply converges to fg.
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Theorem 5.1.2 (Cauchy criterion) For a sequence (fn)n of applications fn : I �! K to

simply converge, it is necessary and su¢ cient that :

8x 2 I;8� > 0;9N(x; �)=m � N(x; �);n � N(x; �) =) jfm(x)� fn(x)j � �:

5.1.3 Uniform convergence

Example 5.1.4 Let I = [0; 1] and 8n 2 N; fn(x) = xn, it is clear that lim
n�!+1

fn(x) = f(x)

such as,

f(x) =

8><>: 0 if x 2 [0; 1[

1 if x = 1

We conclude that :

- Each function fn is continuous whatever n.

- Each (fn)n simply converges to f .

- f is not continuous.

This is why it is necessary to use a more precise notion which preserves continuity by passing

to the limit, this is uniform convergence.

De�nitions

De�nition 5.1.3 We call the norm of uniform convergence the norm for (fn)n and f of FE(I); kfn � fk =

sup
x2I

jfn(x)� f(x)j:

De�nition 5.1.4 A sequence of maps fn : I �! K is said to be uniformly convergent on I if

there exists a map f : I �! K such that,

lim
n�!+1

�
sup
x2I

jfn(x) = f(x)j
�
= 0:

or,

8� > 0;9N ;8x;9n[n > N =) jfn(x)� f(x)j < �]:

or

lim
n�!+1

kfn � fk = 0:
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Interpretation : We have jfn(x) � f(x)j < � =) f(x) � � < fn(x) < f(x) + �. We say that

for n > N , the graph of fn is contained in a band of width 2� symmetrical with respect to the

graph of f .

Proposition 5.1.1 Uniform convergence implies simple convergence. Indeed ; 8x;8n : jfn(x)�

f(x)j � jfn � f j �!
+1

0. The converse is false

Example 5.1.5 Let fn(x) =
nx

1 + nx
with x 2 [0;+1[. We have shown that this sequence simply

converges to

f(x) =

8><>: 0 if x 2 [0; 1[

1 if x = 1
:

as ; kfn � fk = sup
x2I

jfn(x) � f(x)j = sup
x2I

1

1 + nx
= lim

x�!0

1

1 + nx
= 1 i.e. kfn � fk 9 0, hence

the convergence is not uniform.

Cauchy criterion for uniform convergence

Theorem 5.1.3 Let (fn)n be a sequence of functions on I: For the sequence (fn)n to be uni-

formly convergent on I towards a function f it is necessary and su¢ cient that :

8� > 0;9N ;8n;8m;8x � I[n;m > N =) jfn(x)� fm(x)j < �]:

or

8� > 0;9N ;8n;8m;8x � I[n;m > N =) kfn(x)� fm(x)k < �]:

Example 5.1.6 Let fn(x) =
2xn

1 + n2x2
sur I = [0; 1]. We have lim

n�!+1
fn = f = 0: As the upper

bound of the function y �! 2y

1 + y2
on [0;+1[ is equal to 1

2
for y = 1, we have kfnk = sup

I
jf j =

1

2
. Then fn �! 0 simply but not uniformly.

How to show that a sequence of functions converges uniformly

To show that a sequence of functions (fn)n is uniformly convergent :

1. We show that it is simply convergent, which allows us to de�ne f .
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2. We seek to increase jfn(x) � f(x)j by a sequence ("n)n of positive real numbers which

converges to 0 such that ("n)n does not depend on x.

To determine ("n)n, we have two methods.

1. Majoer jfn(x)� f(x)j independently of x.

2. Calculate sup
x2I

jfn(x) = f(x)j using the study of the function jfn(x) = f(x)j :

Operations and uniform convergence

Theorem 5.1.4 Let (fn)n and (gn)n be two sequences in FE(I) uniformly convergent to f and

g respectively, and � 2 K. So

(i) The sequence (fn + gn)n converges uniformly f + g:

(ii) The sequence (�fn)n converges uniformly �f .

(iii) If the maps f and g are bounded, the sequence (fngn)n converges uniformly to fg.

Remark 5.1.3 In (iii), the assumption (f and g bounded) cannot be omitted, otherwise the

theorem is false.

5.1.4 Properties of uniform convergence

Continuity

Theorem 5.1.5 Let (fn)n 2 FE(I), be a sequence of functions uniformly convergent to f . If all

functions fn are continuous at x0, then f is continuous at x0:

Proof. Either

� > 0;9N=8n > N; 8x 2 I; jfn(x)� f(x)j <
�

3
(5.1)

Let us �x an integer n > N , fn being continuous in x0, then It exists

� > 0=8x 2 I; jx� x0j < � =) jfn(x)� fn(x0)j <
�

3
(5.2)

From (5.1) and (5.2) we obtain :

8x 2 I; jx�x0j < � =) jfn(x)�fn(x0)j � jf(x)�fn(x)j+jfn(x)�fn(x0)j+jfn(x0)�f(x0)j < �:
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corollary 5.1.1 If fn �! f uniformly and if all functions fn are continuous on I, then f is

continuous on I.

Remark 5.1.4 1) If a sequence of continuous functions converges to a non-continuous function,

the convergence is not uniform.

2) The theorem gives a su¢ cient condition for f = lim fn to be continuous, but this condition

is not necessary. It can happen that the functions fn being continuous, f is continuous, without

the convergence being uniform.

Example 5.1.7 Let (fn)n be such that I = [0; 2]:

fn(x) =

nx2 if 0 � x � 1

n

nx2 + 2n if
1

n
� x � 2

n

0 if x � 2

n

:

The functions fn are continuous, and lim
n�!+1

fn = f = 0 simply. Because :

If x = 0, fn(0) = 0:

If x > 0; fn(x) = 0 for all n >
2

x
.

However the convergence is not uniform since : kfn(x)� f(x)k = fn(
1

n
) = n �! +1 when

n �! +1.

Example 5.1.8 If a sequence of functions (fn)n simply converges to f , then f is not necessarily

continuous. Let I = [0; 1], and let fn(x) = xn: It is clear that fn(x) �! f(x) such that

f(x) =

8><>: 0 if x 2 [0; 1[

1 if x = 1
:

f is not continuous.
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Example 5.1.9 There exist sequences (fn)n which converge to f continues. Either

fn(x) =

8>>>>>>><>>>>>>>:

0 if x � 0

nx if 0 � x � 1
n

nx+ 2 if 1n � x �
2
n

0 if x � 2
n

:

- For x < 0, we have lim
n�!+1

fn = 0

- For x > 0, we have n >
2

n
=) fn(x) = 0 therefore lim

n�!+1
fn = 0, so the limit is continuous

on R although the convergence is not uniform there since : kfnk = sup
x2R

jfn(x)j = 1 does not tend

towards zero.

Integration

Theorem 5.1.6 Let (fn)n be a sequence of integrable functions on I = [a; b] converging uni-

formly to f . So :

a) f is integrable on [a; b]

b) lim
n�!+1

R b
a fn(x)dx =

R b
a f(x)dx:

Proof. a) Let � > 0, there exists n such that :

8xi 2 R; n 2 [a; b]; fn(x)�
�

2(b� a) � f(x) � fn(x) +
�

2(b� a) (5.3)

because fn �! f uniformly. The function fn being integrable, there exists a subdivision d =

fx0; xl; ::::; xkg of [a; b] such that

kX
i=1

(Mni �mni)(xi � xi�1) <
�

2
(5.4)

or

Mni = sup
[xi�1;xi]

fn et mni = inf[xi�1; xi]fn:

Noting Mi = sup
[xi�1;xi]

f and mi = inf
[xi�1;xi]

f:
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Then (5.3) implies for 1 � i � k that

mni �
�

2(b� a) � mi �Mni +
�

2(b� a)

Which gives taking into account (5.4

kX
i=1

(Mi �mi)(xi � xi�1) �
kX
i=1

(Mni �mni)(xi � xi�1) +
�

2
< �:

Thus, f is integrable.

b) We have for all n ;

j
Z b

a
fn(x)dx�

Z b

a
f(x)dxj �

Z b

a
jfn � f jdx � kfn � fk (b� a) �! 0:

Remark 5.1.5 The condition fn �! f uniformly is su¢ cient but not necessary for lim
n�!+1

R b
a fn(x)dx =R b

a f(x)dx:

Example 5.1.10 Either

fn(x) =

8>>>><>>>>:
0 if x = 0

0 if 1n � x � 1

1 if 0 < x < 1
n

For n >
1

x
we have fn(x) = 0 therefore lim

n�!+1
fn(x) = f(x) = 0. But this convergence is not

uniform because : sup
[0;1]

fn = 18n, however

R 1
0 fn(x)dx =

1

n
�! 0 =

R 1
0 f(x)dx that is to say, although

R 1
0 fn(x)dx =

R 1
0 f(x)dx, but the

convergence is not uniform.

Derivation

We would like to be able to give a theorem similar to that of continuity or that of integration

but unfortunately, this is not possible.

Theorem 5.1.7 Let (fn)n be a sequence of continuously di¤erentiable functions on [a; b](fn 2

C1[a; b];R) satisfying the following properties :

a) the sequence ( �fn)n converges uniformly to g on [a; b]:
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b) There exists a point x0 2 [a; b] such that the sequence (fn(x0)) converges to a limit l. Then

(fn)n converges uniformly to f on [a; b] with (f 2 C1[a; b];R) and we have 8x 2 [a; b] �f(x) = g(x).

In other words : lim
n�!+1

�fn(x) =

�
lim

n�!+1
fn(x)

�0

:

Proof.We have fn(x) = fn(x0)+
R x
x0
�fn(t)dt:According to (3.1.24,a) we have lim

n�!+1

R x
x0
�fn(t)dt =R x

x0
g(t)dt uniformly on [a; b]. Thus (fn)n converges uniformly to f de�ned by :

f(x) = lim
n�!+1

fn(x0) +

Z x

x0

g(t)dt = l +

Z x

x0

g(t)dt

as f continuously di¤erentiable, then �f = g.

5.2 Series of functions

5.2.1 De�nitions and properties

De�nition 5.2.1 Let (fn)n be a sequence of functions with real or complex values de�ned on a

non-empty set I � R, let us associate with this sequence the sequence of functions (Sn)n de�ned

by :
Pn
k=0 fk:

We call a series of functions on (I) with general term fn the pair ((fn)n; (Sn)n). The sequence

(Sn)n is called nth partial sum of the series of functions ((fn)n; (Sn)n) and will be denoted,
P
fn

or
P+1
n=0 fn or f0 + f1 + ::::::fn + :::::

De�nition 5.2.2 The series
P+1
k=0 fk is called the remainder of order n of the series

P+1
n=0 fn.

De�nition 5.2.3 We will say that
P+1
k=0 fk is convergent in x0 2 I if the numerical seriesP+1

k=0 fk(x0) is convergent. We will say that
P+1
k=0 fk is convergent on I (or on a part A � I)

if the series
P+1
k=0 fk(x) is convergent at any point x 2 I ( respectively x 2 A), in this case we

will say that the series
P+1
k=0 fk(x) is simply convergent on I (respectively on A).

We therefore have the following equivalences :

P
fn converges at x0 ()

P
fn(x0) converges() (Sn(x0))n convergesP

fn converges on I () 8x 2 I;
P
fn (x) converges() (Sn)n converges on I:

Thus : The simple convergence of a series on I is equivalent to the simple convergence of the

sequence of its partial sums (Sn)n on I.
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De�nition 5.2.4 Let
P+1
n=0 fn be a convergent series on I and (Sn)n the sequence of its partial

sums. The function S : I �! C de�ned by S = lim
n�!+1

Sn is called the sum of the series and is

denoted S =
P+1
n=0 Un:

Remark 5.2.1 The general theorems relating to numerical series remain true, with necessary

modi�cations, for series of functions.

5.2.2 Uniform convergence

De�nition and example

De�nition 5.2.5 Let
P+1
n=0 fn be a series of functions, we say that this series is uniformly

convergent on I if the sequence (Sn)n of partial sums is uniformly convergent where Sn(x) =P+1
n=0 fn(x). In case of convergence, the limit S such that Sn(x) =

P+1
n=0 fn(x) is called the sum

of the series.

Remark 5.2.2 Thus the uniform convergence of
P
fn on a set E means :

8� > 0;9N ; =8n;8x 2 E
"
n > N =)

�����
+1X

k=n+1

fn(x)

����� < �
#
:

Then the simple convergence is expressed by :

8x 2 E;8� > 0;9N ; =8n;
"
n > N =)

�����
+1X

k=n+1

fn(x)

����� < �
#

We will note :
P+1
k=n+1 fn(x) = S � Sn

Example 5.2.1 Let fn(x) = xn. Then 8x 6= 1;Sn(x) =
Pn
k=0 fk(x) = 1 + x + :::: + xn =

xn+1 � 1
x� 1 , this series therefore simply converges in I =]� 1;+1[ to the function S(x) = 1

1� x .

However the convergence is not uniform on I =]�1;+1[: Indeed, lim
<1

x�!1
(Sn(x)�S(x)) = +1;8n,

so kSn(x)� S(x)k does not tend towards zero. On the other hand, in each interval [��; �] with

0 < � < 1, the convergence is uniform.

Abel�s criterion for uniform convergence

Theorem 5.2.1 We consider the series of general term functions fn. If fn is written in the

form 8x 2 I; fn(x) = "n(x)gn(x) with :
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(1) 8x 2 I; "n(x) is decreasing towards 0.

(2) lim
n�!+1

�
sup
x2I

j"n(x)j
�
= 0:

(3) 9M > 0 such that 8x 2 I;8n 2 N :
Pn
i=0 gi(x) < M .

Then the general term series fn converges uniformly on I.

Example 5.2.2 We show that this series converges uniformly on I, using the Abel criterion.

We pose

8n 2 N;8x 2 I�; [�; 2� � �] with � 2]0; �[ and � 2 [0; 1[; fn(x) =
einx

(n+ 1)�

We show that this series converges uniformly on I, using the Abel criterion. We set

8x 2 I�; fn(x) = "n(x)gn(x); with "n(x) =
1

(n+ 1)�
and gn(x) = einx:

We have

(1) "n(x) decreasing towards 0 because � 2]0; 1[:

(2) We have

8n 2 N; sup
x2I�

j"n(x)j =
1

(n+ 1)�
and lim

n�!+1

 
sup
x2I�

j"n(x)j
!
= 0

(3)
Pn
i=0 gi(x) = 1 + rix + (eix)2 + ::::: + (eix)n which is a sum of a geometric series with

�rst term g0(x) = 1 and reason q = eix, we deduce that,
Pn
i=0 gi(x) =

1� (eix)n+1
1� eix because

eix 6= 1;8x 2 I�. We must �nd an increase of j
Pn
i=0 gi(x)j which is independent of the variable

x and n, since
��eix(n+1)�� = 1 We have

�����
nX
i=0

gi(x)

����� � 1 + jeix(n+1)j
j1� eixj � 2

j1� eixj :

We have

j1� eixj =
p
(1� cosx)2 + sin2 x =

p
1� 2 cosx+ cos2 x+ sin2 x

=
p
2� 2 cosx =

r
4 sin2

x

2
= 2jsin2x

2
j

= 2 sin
x

2
because 0 <

�

2
� x

2
� � � �

2
< �
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First case : 0 <
�

2
� x

2
� �

2

The sine function is increasing on ]0;
�

2
], which allows us to deduce : j1�eixj = 2 sin x

2
� 2 sin �

2
:

Second case :
�

2
� x

2
� � � �

2
< �

The sine function is decreasing on
h�
2
; �
i
, which allows us to deduce : sin

x

2
� sin(�� �

2
) > sin�,

or we have sin(�� �
2
) = sin

�

2
: Thus we obtain : j1�eixj = 2 sin x

2
� 2 sin �

2
, since the inequalities

are the same in both cases, we deduce that :
Pn
i=0 gi(x) �

2

2 sin
�

2

=
1

sin
�

2

=M . Then according

to Abel�s criterion, we deduce that the series of functions converges uniformly on I.

5.2.3 Normal convergence

De�nition 5.2.6 Let
P+1
n=0 fn; fn(x) : I �! K (K = R or C) be a series of functions, we say

that this series is normally convergent on I if the numerical series :
P
n
kfnk where kfnk =

sup
x2I

jfn(x)j, is convergent.

Proposition 5.2.1 Let f1; f2 : I �! K, then kf1 + f2k � kf1k+ kf2k (triangular inequality).

Theorem 5.2.2 If the series
P+1
n=0 fn converges normally on I ; Then it is uniformly convergent

on I:

corollary 5.2.1 Let
P+1
n=0 fn; fn : I �! K be a series of functions ; if there exists a convergent

positive-term numerical series
P+1
n=0 an, such that : 8n;8x 2 I; jfn(x)j � an, then the seriesP+1

n=0 fn is normally convergent on I.

Example 5.2.3 Let
P+1
n=0 fn such that ; fn(x) =

sin(x2 + n2)

x2 + n2
, we have 8x 2 R; jfn(x)j �

1

n2
.

And we have an =
1

n2
we know that

P+1
n=0 an is convergent, therefore the series

P+1
n=0 fn is

normally convergent, therefore uniformly convergent in R.

Remark 5.2.3 Normal convergence is stronger than uniform convergence. There exist uni-

formly convergent series which do not converge normally.

5.2.4 Uniform convergence and properties of a series of functions

Continuity

Theorem 5.2.3 Let
P+1
n=0 fn; fn(x) : I �! K be a series of functions uniformly convergent on

I. If all functions fn are continuous in x0 2 I, the sum S of the series is continuous in x0 2 I:
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corollary 5.2.2 If all functions fn are continuous on I and if
P+1
n=0 fn is uniformly convergent

on I, then the sum is continuous on I.

Remark 5.2.4 The hypotheses are those of Theorem (3.2.16), we can therefore write :

lim
x�!x0

+1X
n=0

fn(x) =

+1X
n=0

lim
x�!x0

fn(x) +

+1X
n=0

fn(x0):

Generalization : If
P+1
n=0 fn is uniformly convergent on I, and if the �nite limit lim

x�!x0
fn(x) =

an(x0 2 I) exists whatever n, the series
P+1
n=0 an is convergent and we have :

lim
x�!x0

+1X
n=0

fn(x) =
+1X
n=0

lim
x�!x0

fn(x) +
+1X
n=0

an(x0):

Remark 5.2.5 This result is often used to demonstrate that a given series is not uniformly

convergent by demonstrating that the sum function Sn(x) is discontinuous at a point.

Example 5.2.4 Study the uniform convergence of the series :

x2 +
x2

1 + x2
+

x2

(1 + x2)2
+ :::::::+

x2

(1 + x2)n
+ :::

We have
P+1
n=0

x2

(1 + x2)n
, suppose x 6= 0, then the series is a geometric series of ratio 1

1 + x2
and

�rst term x2. Then S(x) = x2
1

1 +
1

1 + x2

= 1+x2, If x = 0; Sn(0) = 0, hence lim
x�!0

Sn(0) = S(0),

on the other hand we have lim
x�!0

S(x) = 1 6= S(0) so S is discontinuous at the point x = 0. So

the convergence is not uniform.

Integration

Theorem 5.2.4 Let
P+1
n=0 fn; fn : I = [a; b] �! K be a series of functions uniformly convergent

on [a; b]. If the functions fn are integrable in [a; b], then it is the same for the sum of the series

and we have, Z b

a
S(x)dx =

Z b

a

 
+1X
n=0

fn(x)

!
dx =

+1X
n=0

Z b

a
fn(x)dx:

Furthermore, the series
P+1
n=0

R b
a fn(x)dx converges uniformly on [a; b] towards

R x
a S(t)dt:

Example 5.2.5 We have
1

1 + x
=
P+1
n=0(�1)nxn and

1

x2
=
P+1
n=0(�1)nx2n, converge uniformly

on each interval [a; b] �]� 1; 1[, we can therefore integrate them term by term from 0 to x with
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jxj < 1. So,

ln(x) =
+1X
n=0

(�1)nxn+1
n+ 1

=
+1X
n=0

(�1)nxn
n

;

arctanx =
+1X
n=0

(�1)nx2n+1
2n+ 1

:

Derivation

Theorem 5.2.5 Let
P+1
n=0 fn; fn : I �! K be a series of functions whose general term fn are

continuously di¤erentiable on [a; b](fn 2 C1([a; b];K): If

(a)
P+1
n=0 fn is convergent at a point x0 � [a; b];

(b)
P+1
n=0

�fn (x) is uniformly convergent on [a; b]. Then, the series
P+1
n=0

�fn (x) is uniformly

convergent on [a; b] and we have �S =
�P+1

n=0 fn
�0
=
P+1
n=0

�fn (x) :

Example 5.2.6 Let
P+1
n=0 fn such that fn(x) =

xn

n3(1 + xn)
; I = [0; 1] ; we have jfn(x)j �

1

n3

because xn � 1 therefore
P 1

n3
is convergent, We have normal convergence hence uniform

convergence therefore simple convergence on [0; 1]. Is the sum derivable ?

(i) The functions fn are di¤erentiable with continuous derivatives on [0; 1]. Indeed ; �fn(x) =
xn�1

n2(1 + xn)2
:

(ii) The series
P+1
n=0 fn converges at least at a point of [0; 1]:

(iii) The series of derivatives converges uniformly on [0; 1]. Indeed ;
��� �fn(x)��� = ���� xn�1

n2(1 + xn)2

���� �
1

n2
. Then the sum is therefore di¤erentiable on [0; 1] and we have : For

x 2 [0; 1]; �S(x) =
 
+1X
n=0

fn(x)

!0

=

+1X
n=0

�fn(x):
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Chapitre 6

ENTIGER SERIES

The theory of integer series allows the majority of usual functions to be expressed as

sums of series. We say that an analytic function is a series which can be expressed

locally as a convergent integer series. This makes it possible to demonstrate properties of these

functions, to calculate complicated sums and also to solve di¤erential equations.

6.1 De�nitions and properties

De�nition 6.1.1 An integer series is a series of functions with Un(z) = anzn where an 2 C and

z 2 C. an is the coe¢ cient of order n, a0 the constant term. By convention, we set z0 = 18z 2 C.

If Un(x) = anxn where an 2 C and x 2 R, we speak of an integer series with a real variable.

Proposition 6.1.1 - If there exists R 2 [0;+1[ such that jzj < R, the general term series

Un(z) = anz
n converges.

- If jzj > R, the series diverges.

- Moreover 0 � jrj < R, the series converges normally on the closed disk Dr = fz 2 C=jzj � rg:

Remark 6.1.1 We consider the entire series of general term Un(x) = anx
n

- If there exists R 2 [0;+1[[f+1g; ) that is to say that R can take the in�nite value, such that

x 2]�R;+R[, the general term series Un(x) = anxn converges.

- If jxj > R, the series diverges roughly.

- For normal convergence, it is enough to take r 2 [0; R[ and x 2 [�r;+r]:

De�nition 6.1.2 R is the radius of convergence of the series. Dr = fz 2 C=jzj � rg is the
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convergence disk. By convention, we have D0 = ; and D+1 = C: In the real case ] � R;R[ is

the convergence interval.

Proposition 6.1.2 - if lim
n�!+1

n
p
janj = L 2 [0;+1[ then R =

1

L
.

- if lim
n�!+1

���an+1an

��� = L 2 [0;+1[ then R = 1

L
.

Example 6.1.1 Consider the entire series of general term Un(z) = n!z
n, with z 6= 0. To �nd

out if this series converges, we use the D�Alembert criterion. Thus, we have :

����an+1(z)an(z)

���� =�����(n+ 1)!z(n+1)n!zn

����� = (n + 1)jzj. Or lim
n�!+1

(n + 1)jzj = +1 therefore for all z 6= 0 the series

diverges, we say that the radius of convergence of this entire series is 0.

Example 6.1.2 Let the entire series of general term Un(z) =
zn

n�
, with � 2 R. We have����an+1(z)an(z)

���� = n�

(n+ 1)�
jzj =

�
n
n+1

�
jzj �!

n�!+1
jzj: So the convergence radius is R = 1; (jzj < 1):

Example 6.1.3 Let the entire series of general term Un(z) =
zn

n3n
. We have n

p
jUn(z)j =

jzj
n3

�!
n�!+1

0 ; Then the radius of convergence is R = +1 (convergence for all z).

Example 6.1.4 Let the entire series of general term Un(z) = a
n sin(

2n�

3
+
�

6
)
zn, with (a > 1).

We have n
p
jUn(z)j = a

sin(
2n�

3
+
�

6
)
jzj. When n 2 N the function n �! sin(

2n�

3
+
�

6
) takes the

values
1

2
and �1, Now we have sup

k�n
n
p
jUn(z)j = a

1
2 jzj. so a 12 jzj < 1

a
1
2

= a�
1
2 . Then R = a�

1
2 :

Remark 6.1.2 (Study on the edge of the convergence disk) For an entire series
P+1
n=0 anz

n =

whose radius of convergence R is distinct from 0 and +1, la Proposition (4.1.5) eaves in doubt,

the nature of the entire series at a point z on the edge of the convergence disk, that is to say for

z 2 C such that z = R. All cases can occur : absolute convergence, semi-convergence, divergence.

For example

(1) Un(z) = n�zn with (� 2 R�+); R = 1. We have jUn(z)j = n�, for all z such that jzj = 1

does not tend to 0 when n tends to 1. The series diverges at any point from the edge of the

convergence disk.

(2) Un(z) =
zn

n�
with (� 2 R�+), R = 1. If � > 1, we notice that jUn(z)j =

1

n�
for jzj the

Riemann series
�
1

n�

�
is convergent, therefore the entire series is absolutely convergent at every

point on the edge of the convergence disk. If 0 < � � 1, let us study the cases z = �1, pour

27
Mohamed Kheidar, Biskra
Dr: Fatima OUAARUniversity of 



z = 1 we have the divergent Riemann series
�
1

n�

�
. If z = �1 we have the alternating series�

(�1)n

n�

�
convergent.

6.2 Operations on entire series

We consider the entire series of general term Un(z) = anz
n and Vn(z) = bnzn with convergence

radius Ra and Rb respectively.

� If we consider the entire series of general term Wn(z) = cnz
n = Un(z) + Vn(z) = (an + bn)z

n.

Then Rc � min(Ra; Rb), moreover if Ra 6= Rb; Rc = min(Ra; Rb):

� If we consider the entire series of general term Wn(z) = dnz
n =

P+1
n=0 Un(z) + Vn�k(z) =P+1

n=0

�
akz

k
� �
bn�kz

n�k� = znP+1
n=0(a� kbn�k), then Rc � min(Ra; Rb)

Example 6.2.1 We consider the series S1 =
P+1
n=0 z

n and S2 =
P+1
n=0�zn, We have Un(z) =

zn; Vn(z) = �zn; (8n; an = 1; bn = �1), then Ra = 1 and Rb = 1. So S =
P+1
n=0 cnz

n =P+1
n=0(an + bn)z

n =
P+1
n=0(1 + (�1))zn = 0, has convergence radius Rc = +1 � min(Ra; Rb):

Example 6.2.2 We consider the series S1 =
P+1
n=0 z

n; Ra = 1. We consider the entire series

de�ned as follows : b0 = 1; b1 = �1; and 8n � 2; bn = 0, we deduce that : S2 = 1 � z which

has convergence radius Rb = +1. If we calculate S = S1 � S2 we obtain Wn(z) = dnz
n =

zn
P+1
n=0(akbn�k), we deduces that : d0 = a0b0 = 1; d1 = a0b1 + a1b0 = �1 + 1 = 0 and therefore

8n � 1; dn = 0; Rd = +1:

6.3 Derivation and integration of integer series

6.3.1 Properties

Theorem 6.3.1 Let
P+1
n=0 anz

n be an integer series with sum f(z). The function z �! f(z) is

continuous in the convergence disk of the series.

Proposition 6.3.1 Let the entire series be de�ned by : S(x) =
P+1
n=0 anx

n such that x 2

] � R;+R[, where R is the radius of convergence. If the function S is C+1 then ] � R;+R[

alors �S(x) =
P+1
n=1 nanx

n�1 =
P+1
n=0 (n+ 1) an+1x

n: So, this new series also has a radius of

convergence R.
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corollary 6.3.1 Let the entire series be de�ned by : S(x) =
P+1
n=0 anx

n such that x 2]�R;+R[,

where R is the radius of convergence. We set T (x) =
P+1
n=1 an�1

xn

n
=
P+1
n=0 an

xn+1

n+ 1
: The radius

of convergence of this series is also equal to R, and 8x 2]�R;+R[; �T (x) = S(x):

6.3.2 Applications

1. We know the geometric series 8x 2]� 1;+1[;
P+1
n=0 x

n =
1

1� x , and we know an antideri-

vative
R 1
�1

1

1� xdx = � ln(1�x). The primitive of
P+1
n=0 x

n is equal to
P+1
n=0

xn+1

n+ 1
. Then

we deduce that ln(1� x) = �
P+1
n=1

xn

n
. What�s more

8x 2]� 1;+1[; ln(1 + x) = ln(1� (1� x)) = �
+1X
n=1

(�x)n

n
=

+1X
n=1

(�1)n�1x
n

n
:

2. What�s more

8x 2]� 1;+1[; arctan(x) = 1

2
[ln(1 + x)� ln(1� x)]

arctan(x) =
1

2

"
+1X
n=1

(�1)n�1x
n

n
+
+1X
n=1

xn

n

#
=

"
+1X
n=1

(�1)n�1 + 1
2

#
xn

n
:

For all odd n we have n = 2p+ 1;8p 2 N

arctan(x) =
+1X
p=0

"
(�1)(2p+1)�1 + 1

2

x2p+1

2p+ 1

#
=
+1X
p=0

x2p+1

2p+ 1
;8x 2]� 1;+1[:

3. Consider the function arctanx which is the primitive of
1

1 + x2
which vanishes at 0. To

obtain its expansion into an integer series 8x 2] � 1;+1[ we use the previous result , we

obtain
1

1 + x2
=

1

1 + (�x2) =
+1X
n=0

(�1)n x2n

By integrating this series with arctan 0 = 0 to determine the constant, we obtain

8x 2]� 1;+1[; arctanx =
+1X
n=0

(�1)n x
2n+1

2n+ 1
:

4. We seek the expansion in integer series of the function f(x) =
1

1� 3x+ 2x2 , since 1�3x+

2x2 = 2(x� 1)(x� 1
2
), then f(x) =

1

x� 1 +
1

(x� 1
2
)
, but we have
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1

x� 1 = �
1

x� 1 = �
P+1
n=0 x

n et
1

(x� 1
2
)
=

2

2(x� 1
2
)
= � 2

1� 2x = �2
P+1
n=0(2x)

n, with �1 <

x < 1: So f(x) = �
P+1
n=0 x

n = 2
P+1
n=0(2x)

n =
P+1
n=0(�1 � 2n+1)xn we set an = (�1 � 2n+1),

so f(x) =
P+1
n=0 anx

n; R =
1

2
:
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Chapitre 7

FOURIER SERIES

LFourier series are series of functions of a particular type, which are used to study per-

iodic functions. The idea is to express any 2�-periodic function as a linear combination

of simple 2�-periodic functions, of the form cos(nx) or sin(nx), with n 2 N. This "linear com-

bination" will, in general, be an in�nite sum, that is to say a series :

7.1 De�nitions et proprieties

De�nition 7.1.1 (trigonometric series) We call a trigonometric series a series of functionsP
fn whose general term is of the form fn(x) = an cos(nx) + bn sin(nx) with x 2 R and, for all

n 2 N; an 2 C and bn 2 C:

Propretie 7.1.1 (Convergence 1) If
P
an and

P
bn converge absolutely, then the trigono-

metric series
P
(an cos(nx) + bn sin(nx)) converges normally on R.

Propretie 7.1.2 (Convergence 2) If the sequences (an)n2N and (bn)n2N are real, decreasing,

and tend towards 0 then, for all x0 2 R=2�Z �xed
P
(an cos(nx0) + bn sin(nx0)) converges.

Moreover for all " > 0,
P
(an cos(nx) + bn sin(nx)) converges uniformly on each interval of the

form [2n� + "; 2(n+ 1)�"] with n 2 Z:

The proof of this property is an application of the uniform Abel rule. We then have :

Propretie 7.1.3 (Complex writing) Any trigonometric series :

X
n2N

(an cos(nx) + bn sin(nx))
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can be rewritten in the form
P
n2Z cne

inx with c0 = a0 and 8n 2 N; cn =
an � ibn

2
and c�n =

an + ibn
2

. Then, 8n 2 N; an = cn + c�n and bn = i(cn � c�n):

When a trigonometric series converges uniformly on [��; �], we can �nd its coe¢ cients according

to its sum

Propretie 7.1.4 (Evaluation of the coe¢ cients) Let
P
(an cos(nx) + bn sin(nx)) be a tri-

gonometric series uniformly convergent on [��; �]. Note,

S(x) =
X
n2N

(an cos(nx) + bn sin(nx)) ;

for x 2 R. Then a0 =
1

2�

R �
�� S(x)dx and for all n 2 N�, an =

1

�

R �
�� S(x) cos(nx)dx and

bn =
1

�

R �
�� S(x) sin(nx)dx:

Remark 7.1.1 1. S is an R �! C function. We therefore have here integrals of functions R �!

C to which we must give meaning. By de�nition, for f : R �! C;
R b
a f(x)dx =

R b
a Re(f(x))dx+

i
R b
a Im(f(x))dx:

2. We have no expression for b0. In fact, since b0 is the coe¢ cient of sin(0x) = 0, it has no

importance, we can choose for example b0 = 0.

If the trigonometric series is given by its complex writing, the expressions simplify :

Propretie 7.1.5 (Trigo-complexe serie ) Let
P
n2Z cne

inx be a trigonometric series written

in complex form which converges uniformly on [��;�]. Let us note, for all x 2 R; S(x) =P+1
n=�1 cne

inx. Then for all n 2 Z; cn =
1

2�

R �
�� S(x)e

�inxdx:

Remark 7.1.2 Since cos(nx) and sin(nx) are 2�-periodic, so S(x) is 2�-periodic. Because of

this, we can change the integration interval : for all � 2 R, for all n 2 Z; cn =
1

2�

R �+2�
� S(x)e�inxdx:

The same is true for an and bn.

Now that we have studied trigonometric series, we can return to the initial program : given any

2�-periodic function, can we rewrite it as the sum of a trigonometric series ?

De�nition 7.1.2 (Fourier series) Let f is 2�-periodic, Its Fourier series is by de�nition the

trigonometric series
P
n2N (an cos(nx) + bn sin(nx)) de�ned by a0 =

1

2�

R �
�� f(x)dx and for all
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n 2 N; an =
1

�

R �
�� f(x) cos(nx)dx and bn =

1

�

R �
�� f(x) sin(nx)dx, if these integrals are de�ned.

Or, equivalently, it is the trigonometric series written in complex form
P
n2Z cne

inx where, for

all n 2 Z; cn =
1

2�

R �
�� f(x)e

�inxdx. The coe¢ cients an and bn (or, equivalently cn) are called

Fourier coe¢ cients of f .

Propretie 7.1.6 (Parity) 1. Since f is 2�-periodic function, we can change the integration

interval to [�; �+ 2�], for all � 2 R.

2. If f is even, for all n 2 N; bn = 0:

3. If f is odd, for all n 2 N; an = 0:

Analogously to what happens when we develop a function in integer series, given a function f

2 -periodic whose Fourier coe¢ cients are de�ned, two questions arise :

1. Does the Fourier series of f converge ?

2. If yes, does it converge to f f ?

Unfortunately, as with entire series, the answer may be no to each of these questions. There is a

whole theory describing the convergence of the Fourier series under various assumptions about

f. Among this theory, we will retain for this course the following result :

Theorem 7.1.1 (Dirichlet Jordan) Let f be a 2�-periodic function continuous on [��; �]

sexcept possibly at a �nite number of points. We assume that at these points of discontinuity, f

admits a �nite right limit and a left limit. Finally, we suppose that f admits at every point of

[��; �] a right derivative and a left derivative (�nite). Then for all x 2 R, the Fourier series of

f is convergent at x and has the sum
1

2

�
lim

y�!x+
f(y) + lim

y�!x�
f(y)

�
: In particular, at any point

x where f is continuous, the sum of its Fourier series is f(x).

It is convenient to reinterpret the theory of Fourier series using the notions of vector space

and dot product. We can then retain certain aspects of the Fourier series by keeping in mind

the analogy with the simple vector space that is R2, which is equipped with the scalar product

~x:~y = x1y1+x2y2. This analogy is written in a more natural way when we use the complex writing

of Fourier series. The space which, for Fourier series, plays the role of the vector space R2 is

the set of periodic functions F = ff : R �! C; 2� � and whose squareis integrable on [��; �]g :

We can de�ne a product on F (a function F � F �! C) which will play the role of the scalar

product of R2 :
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De�nition 7.1.3 (Scalar product) For f; g 2 F , we call the scalar product of f and g, and

we note (f; g) the complex number (f; g) =
1

2�

R �
�� f(x)�g(x)dx where �g(x) denotes the conjugate

complex number of g(x).

When we have a scalar product, we can de�ne a norm :

De�nition 7.1.4 (Norm) Let f 2 F . We call the norm of f and we note kfk the positive real

number kfk =
p
(f; f).

Remark 7.1.3 The norm of R2 is constructed this way from the scalar product : k~xk =
p
~x:~x =p

x21 + x
2
2:

Propretie 7.1.7 (Orthonormal basis) The (in�nite) set of functions
�
x 7! einx; n 2 Z

	
forms

an orthonormal basis (in�nite) of F provided with the scalar product. Indeed we have already

seen that for all n0 2 Z;

1

2�

Z �

��
einxe�in0xdx =

8><>: 1 if n = n0

0 otherwise
;

which translates to :

�
ein0x; einx

�
=

8><>: 1 if n = n0

0 otherwise
;

which is the de�nition of an orthonormal family. The fact that this family contains enough

elements to be considered a base requires further development :

The di¤erence between R2 and F is that an orthonormal basis of R2 contains only 2 ele-

ments while an orthonormal basis of F contains in�nitely many elements. We say that F is

of in�nite dimension. By analogy with R2, we say that we have decomposed f 2 F accor-

ding to the orthonormal basis
�
x 7! einx; n 2 Z

	
if we found coe¢ cients cn 2 Z such that

lim
N�!+1




f(x)�P+N
n=�N cne

inx



 = 0: The previous proposition asserts that this decomposition

is possible for all f 2 F . Then we get the following interpretation.
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7.2 Geometric interpretation of Fourier series

Let f 2 F . Its Fourier series is nothing other than its decomposition according to the orthonormal

basis
�
x 7! einx; n 2 Z

	
. This interpretation allows us to retain the expression of the Fourier

coe¢ cients of f :

Propretie 7.2.1 (Orthogonal projection) Let f 2 F . For all n 2 Z its Fourier coe¢ cient

cn is the orthogonal projection of f on einx, i.e. cn = (f(x); einx) =
1

2�

R �
�� f(x)e

�inxdx:

Finally, this interpretation makes it possible to connect the norm of f with its Fourier coe¢ -

cients :

Theorem 7.2.1 (Parseval-Bessel) Let f 2 F and fcn; n 2 Zg be its Fourier coe¢ cients in

complex writing, f(an; bn); n 2 Ng be its Fourier coe¢ cients in real writing. Then the norm of f

veri�es :

1. Bessel inegality : for all N 2 N,

kfk2 = (f; f) = 1

2�

Z �

��
f(x) �f(x)dx �

NX
n=�N

jcnj2

= ja0j2 +
1

2

NX
n=1

(janj2 + jbnj2):

2. Parseval egality :

kfk2 = (f; f) =
+1X
n=�1

jcnj2 = ja0j2 +
1

2

+1X
n=1

(janj2 + jbnj2):
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