Faculty of FSESNV Department of SM University Year 2023/2024 Module: Series and Diff. Eq Level: 2^{nd} Year LMD Specialty: Physics

Dirigated Work $N^{\circ}4$

(NUMERICAL SERIES, FUNCTION SEQUENCES AND SERIES, INTEGER SERIES)

Exercise 1 Study the convergence of the following numerical series:

$$\sum_{n=1}^{+\infty} \frac{1}{n(n+1)}, \quad \sum_{n=2}^{+\infty} \ln(1+\frac{1}{n}), \quad \sum_{n=0}^{+\infty} \frac{4n+3}{n+1}, \quad \sum_{n=1}^{+\infty} \frac{2^n n!}{n^n}, \quad \sum_{n=2}^{+\infty} \frac{(-1)^n}{\ln(n)},$$
$$\sum_{n=0}^{+\infty} \frac{(-1)^n}{(2n-1)^2}, \quad \sum_{n=1}^{+\infty} \frac{2n}{n+2^n}, \quad \sum_{n=1}^{+\infty} \left(\frac{n}{n+1}\right)^{n^2}, \quad \sum_{n=1}^{+\infty} \frac{2^{n+1}}{3^n},$$

Exercise 2 Consider the following sequence of functions:

$$f_n(x) = \frac{\sqrt{nx}}{1 + \sqrt{nx^2}}, x \in [0, +\infty].$$

- 1) Study its simple convergence.
- 2) Study its uniform convergence on $[b, +\infty[, b > 0]$.

Exercise 3 Let the sequence of functions be defined by:

$$f_n(x) = \frac{e^{-x}}{1+n^2x}, \ n \ge 1.$$

- 1) Study its simple convergence and its uniform convergence on $[1, +\infty[$.
- 2) Study the simple convergence of the series $\sum_{n\geq 1} f_n(x)$ on $[1, +\infty[$. 3) Show that $\sum_{n\geq 1} f_n(x)$ converges normally on $[1, +\infty[$.

Exercise 4 1) - Determine the domain of convergence of the following integer series:

$$\sum_{n>1} \frac{\left(-1\right)^n}{n^3} x^n.$$

2) - We consider the entiger series $f(x) = \sum_{n>0} n (-2)^n x^n$.

- a) What is the radius of convergence of f(x). b) What is the radius of convergence of $g(x) = \sum_{n>0} (-2)^n x^n$.
- c) Deduce that f(x) = xg'(x).

Charged of courses Dr. OUAAR, F