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Exercise 1 Study the convergence of the following numerical series:
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Exercise 2 Consider the following sequence of functions:

fn(x) =
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; x 2 ]0;+1] :

1) - Study its simple convergence.
2) - Study its uniform convergence on [b;+1[ ; b > 0:

Exercise 3 Let the sequence of functions be de�ned by:

fn(x) =
e�x

1 + n2x
; n � 1:

1) - Study its simple convergence and its uniform convergence on [1;+1[ :
2) - Study the simple convergence of the series

P
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fn(x) on [1;+1[ :

3) - Show that
P
n�1

fn(x) converges normally on [1;+1[ :

Exercise 4 1) - Determine the domain of convergence of the following integer series:
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2) - We consider the entiger series f(x) =
P
n>0

n (�2)n xn:

a) - What is the radius of convergence of f(x).
b) - What is the radius of convergence of g(x) =

P
n>0

(�2)n xn.

c) - Deduce that f(x) = xg
0
(x):
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