
Chapitre 7

LAPLACE TRANSFORMATION

The Laplace transformation is, along with the Fourier transformation, one of the most

important integral transformations. It intervenes in many questions of mathematical

physics, probability calculation, automation, etc., but it also plays a major role in classical

analysis. It very legitimately bears the name of Pierre-Simon Laplace (1749-1827).

7.1 De�nition, convergence abscissa

Dé�nition 7.1.1 Let f : [0;+1[ or ]0;+1[�! R or C be a piecewise continuous function on

any segment. We call the Laplace transform of f the function of a real or complex variable :

F (p) = L(p) =
Z +1

0
e�ptf(t)dt:

Let f : R �! R or C be a piecewise continuous function on any segment. We call the Laplace

transform of f the function of a real or complex variable :

F (p) = (p) =

Z +1

�1
e�ptf(t)H(t)dt =

Z +1

0
e�ptf(t)dt:

where H(t) is the Heaviside function de�ned by H(t) = 0 for t < 0; 1 for t > 0:

The function f(t) is called original, object function, or causal function. The function F (p) is

called the image of f(t). We note f(t)]F (p) for this correspondence.

The following problems naturally arise :

� At what points is the function F de�ned ?
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�What are its properties within its domain of de�nition ?

� What are its properties at the edge of this domain ?

� What are the algebraic properties, di¤erential and integral, of the Laplace transformation

L : f ! F ?

� Can we go back from F to f ? That is, is there an inverse Laplace transform ?

Let us denote by D(f) the set of complexes p = a + ib such that the function t �! e�ptf(t)

is integrable on ]0;+1[, that is to say
R +1
0 e�ptf(t)dt is absolutely convergent. D(f) is called

the domain of absolute convergence of the Laplace transform. Like je�ptf(t)j = e�atjf(t)j; p 2

D(f) () a = Re(p) 2 D(f): Moreover, if p 2 D(f), then for all �a > a, e��atf(t) is integrable.

We deduce from this that the set D(f) is of one of the following four forms :

? ;C; fp;Re (p) 2]A;+1[g or fp;Re (p) 2 [A;+1[g:

The real A = a(f) is called the abscissa of absolute convergence of the Laplace transform. We

agree that A = +1 if D(f) = ? ; A = �1 if D(f) = C:

Exemple 7.1.1 1) If f(t) = exp(t2); D(f) = ?, because t �! e�ptet
2
is never integrable.

2) If f(t) = 0 or if f(t) = exp(�t2), D(f) = C, because t �! e�ptf(t) is always integrable.

3) If f(t) = 1 or H(t); D(f) = fp;Re (p) > 0g and L(1)(p) = L(H)(p) =
R +1
0 e�ptdt =

1

p
:

4) If f(t) = eat or eatH(t); D(f) = fp;Re (p) > ag and L(eat)(p) = L(eatH(t))(p) =
R +1
0 e(a�p)tdt =

1

p� a:

5) If f(t) =
1

1 + t2
; D(f) = fp;Re (p) � 0g:

6) If f(t) =
1p
t
;D(f) = fp;Re (p) > 0g:

The following proposition gives a su¢ cient condition for a function f to have a Laplace trans-

form :

Proposition 7.1.1 Let f :]0;+1[�! R or C continue piecewise on any segment. If the integralR 1
0 jf(t)j dt converges, and if 9(M;
;A)8t � Ajf(t)j � Me


t; D(f) is non-empty. The function

f is said to be of exponential order if it satis�es this last condition.
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7.2 General properties

In the following, we freely use the abusive notation F (p) = L(f(t))(p) for f(t)]F (p). The variable

p is assumed to be real.

Proposition 7.2.1 (linearity) If D(f) and D(g) are non-empty�D(�f + �g) is non-empty

and, on D(f) \D(g) :

L(�f + �g)(p) = �L(f)(p) + �L(g)(p):

Proposition 7.2.2 (translation) If D(f) is non-empty, for all �, D(e�atf(t)) is non-empty

and L(e�atf(t))(p) = () (p+ �):

Preuve. L(e��tf(t))(p) =
R +1
0 e�pte��tf(t)dt =

R +1
0 e�(p+�)tf(t)dt = (())(p+ �):

Proposition 7.2.3 (delay) If D(f) is non-empty, a > 0; g(t) = f(t � a) for t > a for t < a;

and L(f(t� a))(p) = e�ap () (p):

Preuve. L(g)(p) =
R +1
0 e�ptg(t)dt =

R a
0 e

�ptg (t) dt+
R +1
a e�ptg (t) dt =

R +1
a e�ptf(t� a)dt =R +1

0 e�p(u+a)f(u)du = e�ap () (p):

Proposition 7.2.4 (change of scale) Si D(f) is non-empty, D(f(at)) is non-empty for all

a > 0, and L(f(at))(p) = 1

a
() (
p

a
):

Preuve. L(f(at))(p) =
R +1
0 e�ptf(at)dt =

1

a

R +1
0 e

pu

a f(u)du =
1

a
(
p

a
):

Proposition 7.2.5 (derived from the image) If D(f) is non-empty, the function = F is of

class C1 on the interval ]a(f);+1[, and L(tnf(t))(p) = (�1)nF (n)(p):

Preuve. Here, the variable p is assumed to be real. Let p > a(f). Let us choose b such that

a(f) < b < p. The function e�btf(t) is integrable on ]0;+1[. As tne�pt jf(t)j = O(e�btf(t)) at

V (+1), each of the functions tne�ptf(t) is integrable. The parameter integral di¤erentiation

theorem applies :

- Each function t �! tne�ptf(t) is piecewise continuous and integrable ;

- Each function p �! tne�ptf(t) is continuous ;

- For p � b > a(f); tne�ptf(t) �Me�bt jf(t)j, integrable upper bound.
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Corollaire 7.2.1 If f(t) has positive real values, F (p) is positive, decreasing, convex, and com-

pletely monotonic, in the sense that its nth derivative has the sign of (�1)n:

Proposition 7.2.6 (Image de la dérivée) If f is C1 over R+, then L( �f)(p) = pF (p)� f(0):

If f is C2 over R+, then L(½f)(p) = p2F (p)� pf(0)� �f(0):

If f is Cn over R+, then L(f (n))(p) = pnF (p)�(pn�1f(0)+pn�2 �f(0)+: : :+pf (n�2)(0)+f (n�1)(0)):

Preuve. Just integrated by parts.

Proposition 7.2.7 (Image of the integral) If D(f) is non-empty and if f is piecewise conti-

nuous L
�R t
0 f (u) du

�
(p) =

F (p)

p
:

Proposition 7.2.8 (Convolution) Let f and g be two continuous functions [0;+1[�! C, ex-

ponential order, their convolution product f �g, de�ned by 8x � 0; (f �g)(x) =
R x
0 f (x� t) g (t) dt

is continuous, of exponential order, and L(f � g)(x)(p) = L(f)(p):L(g)(p):

Preuve. The proof scheme, based on double integrals, is as follows :

L(f � g)(x)(p) =
Z +1

0
epx(f � g)(x)dx

=

Z +1

0
epx(

Z x

0
f(x� t)g(t)dt)dx =

ZZ
�

f(x� t)g(t)e�pxdtdx

=

ZZ
�

f(x� t)g(t)e�p(x�t)e�ptdtdx =
ZZ
�

f(x� t)g(t)e�p(x�t)e�ptdxdt

=

Z +1

0

�Z +1

t
f (x� t) g (t) e�p(x�t)e�ptdx

�
dt

=

Z +1

0

�Z +1

t
f (x� t) e�p(x�t)dx

�
g (t) e�ptdt

=

Z +1

0

�Z +1

0
f (u) e�pudu

�
g (t) e�ptdt =

Z +1

0
F (p)g(t)e�ptdt

= F (p)G(p) = L(f)(p)L(g)(p):

7.3 Initial value, �nal value

Let f :]0;+1[�! R or C be a piecewise continuous function. Suppose its Laplace transform

F (p) =
R +1
0 e�ptf(t)dt de�ned for p > 0, in other words a(f) � 0: We propose to study the
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asymptotic behavior of F (p) and when p �! +1 when p �! 0+. To do this, observe that

pF (p) = p
R +1
0 e�ptf(t)dt, where

R +1
0 pe�ptdt = 1pF (p) is the average of the values f(t) taken

by f , weighted by the weights pe�ptdt:

7.3.1 Behavior of F (p) when p �! +1

When p tends towards +1, the weights pe�ptdt concentrate in the vicinity of 0+, so that F (p)

depends more and more on the valuesof f(t) in the vicinity of 0+ as p increases. To obtain an

equivalent or an asymptotic expansion of F (p) at V (+1), it will su¢ ce to replace, in F (p); f(t)

by its equivalent or its asymptotic expansion at 0+. This is the Laplace method, or initial value

property.

Théoreme 7.3.1 (Initial value theorem) Let f : [0;+1[�! C, continue piecewise on any

segment, verifying : (L)(9r)f(s) = O(ers) at V (+1):F (p) is de�ned for p > r, and lim
p�!+1

pF (p) =

lim
t�!0+

f(t):

We will �nd in exercises applications and generalizations of this important result.

7.3.2 Behavior of F (p) when p �! 0+

When 0 is inside D(f), i.e. a(f) < 0; F (p) is expandable as an integer series at 0 and there is no

problem. If 0 is on the edge of D(f), i.e. a(f) = 0, the weights pe�ptdt are distributed more and

more homogeneously as p �! 0+, so that F (p) depends more and more of the values taken by

f(t) in +1, or, let�s say, of its average general behavior on R�+. This is the �nal value property.

Théoreme 7.3.2 (Final Value Theorem) 1) If f is integrable over R�+, then F = L(f) is

de�ned for p � 0, and continues to 0.

2) If f is integrable over ]0; 1] and has a limit ! in +1, F (p) is de�ned for p > 0 and

lim
p�!0+

pF (p) = lim
t�!+1

f(t) = !:

Preuve. left in exercise.

7.4 Table of usual Laplace transforms

Just as there are tables of usual primitives, tables of usual limited expansions, there exist tables

of Fourier transforms and tables of Laplace transforms of usual functions. In the table below,
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it is strictly necessary to indicate the convergence abscissa. From this table and the calculation

rules above, we deduce that the Laplace transformation induces an isomorphism of the vector

space of exponential-polynomials, that is to say the linear combinations of the functions tneat

(a réel ou complexe), on the vector space of rational fractions of degree < 0. (See appendices).

7.5 Inverse Laplace transform

If f(t) has Laplace transform F (p); F =, we symbolically write f = L�1F and we say that f is

a Laplace transform inverse of F .

Warning : the Laplace transformation is not injective !

� On the one hand, only the values taken by f(t) on t > 0. come into play. The functions 1 and

H(t) even have a Laplace transform.

� On the other hand, two functions which di¤er on R�+ can have the same Laplace image. A

zero function almost everywhere has a zero Laplace transform.

The functions f(t) = e�2t and g(t) = 0 for t = 5, e�2t for t 6= 5, even have a Laplace transform :

()(p) = ()(p) =
1

p+ 2
:

However, the Laplace transformation is injective if we restrict it to certain classes of functions :

exponential-polynomials, Lerch�s theorem...

7.6 Introduction to symbolic calculus

Symbolic calculus, or operational calculus, was invented by Heaviside to solve in particular linear

di¤erential equations and systems, but also certain integral equations. It bridges the gap between

analysis and algebra. We will develop it using a few examples.

Exemple 7.6.1 (Solve the di¤erential equation) ½y+3�y + 2y = t; y(0) = �y(0) = 0. It is

a linear di¤erential equation with constant coe¢ cients. Let us denote F (p) = (Lf)(p) as the

Laplace transform of y(t).

L(½y+ 3�y + 2y)(p) = L(t)(p)

p(pF (p)� y(0))� �y(0) + 3p(F (p)� y(0)) + 2F (p) = 1

p2

(p2 + 3p+ 2)F (p)� 4py(0)� �y(0) = 1

p2
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F (p) =
1

p2 (p2 + 3p+ 2)
=

1

p2 (p+ 1) (p+ 2)
=
1

2

1

p2
� 3
4

1

p
+

1

p+ 1
� 1
4

1

p+ 2
:

The decomposition into simple elements of the fraction allows us to go back to the causal function.

F (p) is Laplace transform of :

y(t) =
1

2
t� 3

4
+ e�t � 1

4
e�2t:

This method provides the correct result, but it poses problems of rigor.

1st problem : does the solution y(t) have a Laplace transform? It would be necessary to show that

the solutions of linear di¤erential equations with constant coe¢ cients and with an exponential-

polynomial second member are all dominated by O(eMt) for a suitable M . This is indeed the

case.

2nd problem : a uniqueness argument is missing to go back from F (p) to the source y(t). It

would be necessary to demonstrate that the Laplace transformation y(t) �! F (p) is injective on

a su¢ ciently large class of functions (exponential-polynomials in particular).

Exemple 7.6.2 (Find the continuous function f from R in R) checking :

8x 2 R f(x) = x2 +

Z x

0
sin(x� t)f(t)dt: (7.1)

It is a functional convolution equation, which is written : : f(x) = x2 + (sin �f)(x). Let us

denote F (p) = ()(p) as the Laplace transform of f(x). It comes F (p) =
2

p3
+
F (p)

p2 + 1
, so F (p) =

2

p3
+
2

p5
:F (p) is the Laplace transform of f(x) = x2 +

1

12
x4. The converse is easy.

NB : We could give a more rigorous and more basic direct solution. Indeed, (7.1) is written :

8x 2 R f(x) = x2+sin (x)
R x
0 cos (t) f(t)dt� cos (x)

R x
0 sin (t) f(t)dt: We deduce that f is C

1

and, step by step, C+1. If we di¤erentiate it twice, we come across a di¤erential equation. . .
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Chapitre 8

FOURIER TRANSFORMATION

8.1 De�nitions

Let f : Rd �! C be a piecewise continuous function (or more generally locally integrable in the

Riemann sense). We will say that f belongs to the space L1(Rd), if :

Z
Rd
jf(x)j dx <1;

that is to say if the integral above is convergent. Likewise we will say that f belongs to the space

L2(Rd) if : Z
Rd
jf(x)j2 dx <1;

We notice

kfk1 :=
Z
Rd
jf(x)j dx; for f 2 L1(Rd);

kfk2 :=
�Z

Rd
jf(x)j2 dx

� 1
2

; for f 2 L2(Rd)

The quantities kfk1 and kfk1 are norms, that is to say that : kf + gki � kfki + kgki, k�fki =

j�j kfki and kfki = 0 =) f = 0: For f 2 L1(Rd), we set :

f̂(k) :=

Z
Rd
e�ikxf(x)dx; k 2 Rd:

where k:x =
Pd
i=1 kixi. The function f̂ is called the Fourier transform of the function f . We
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also write :

f̂ = Ff or F(f);

where the transformation :

F : f 7! f̂

is called the Fourier transform. It is therefore an operator which transforms functions of the

variable x into functions of the variable k. If the variable x represents a position (its dimension

is therefore m), the variable k represents an impulse, its dimension is m�1. In signal processing,

we have d = 1, the variable x is denoted t and has the dimension of a time (s), the variable k is

denoted and has the dimension of a frequency (s�1):

8.2 Properties

We use the following notations : the symbol @xj , designates the derivation operator with respect

to xj :

@xjf(x) :=
@

@xj
f(x):

The symbol xj denotes the multiplication operator by xj :

xjf(x) := xjf(x):

We use the same conventions for the symbols @kj and kj , which act on functions of the variable

k.

Proposition 8.2.1 (1) if f 2 L1(Rn), Ff is a continuous and bounded function on Rd;

(2) si f 2 L1(Rd) and xjf 2 L1(Rd), Ff is a function of class C1 and :

@kjFf(k) = �iF (xjf)(k);

(3) if f 2 L1(Rd) and @xjf 2 L1(Rd), then kjFf is bounded and :

kjF(f)(k) = �iF(@xjf)(k):
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The thing to remember is that the Fourier transform F transforms the momentum operator

Dj = i
�1@xj ; in the multiplication operator kj :

F(Djf) = kjF(f):

Proposition 8.2.2 (Link to convolution) Let f; g 2 L1(Rd). We set :

h(x) := f � g(x) =
Z
Rd
f(x� y)g(y)dy:

The function f � g is called the convolution product of f and g. We have :

(1) f � g = g � f;

(2) f � g 2 L1(Rd) and kf � gk1 � kfk1 kgk1 ;

(3) F(f � g) = F(f)F(g):

In other words, the Fourier transform transforms the convolution product into the ordinary

product of functions.

8.3 Table of usual Fourier transforms

We now give some Fourier transforms of usual functions :

1. We start with the case d = 1:

f(x) = I[�a;a](x); Ff(k) =

8><>: 2
sin(ak)

a
k 6= 0

0 k = 0
:

We recall that II(x) designates the indicator function of the set I, equal to 1 if x 2 I and

to 0 otherwise.

f(x) = e�ajxj; a > 0; Ff(k) = 2 a

a2 + k2
:

f(x) = e
�ax2
2 ; a > 0; Ff(k) = (2�

a
)
1
2 e�a

�1k2=2: (8.1)

(The Fourier transform of a Gaussian is a Gaussian).
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2. In any dimension d, the last formula generalizes :

f(x) = e�
Pd
1 aix

2
i =2; Ff(k) =

dY
1

(
2�

ai
)
1
2 e�

Pd
1 a

�1
i k2i =2; for ai > 0:

3. For more details see the annexes.

8.4 Inverse Fourier Transform

Proposition 8.4.1 Let f 2 L1(Rd) be a function such that f̂ 2 L1(Rd). So we have :

f(x) = (2�)�d
Z
Rd
eik:xf̂(k)dk:

We can rewrite this result as :

F�1g(x) = (2�)�d
Z
Rd
eik:xg(k)dk:

where F�1 denotes the inverse Fourier transform, which transforms functions of the variable k

into functions of the variable x.

8.5 Fourier transform on L2(Rd)

Proposition 8.5.1 (Plancherel�s formula) Let f 2 L1(Rd) \ L2(Rd). Then f̂ 2 L2(Rd) and

we have : Z
Rd
jf(x)j2 dx = (2�)�d

Z
Rd

���f̂ ���2 (k)dk:
This proposal makes it possible to extend the Fourier transformation from the space L1(Rd) to

the space L2(Rd).

Proposition 8.5.2 (Fourier transformation on L2(Rd)) Let f 2 L2(Rd). We set :

f̂"(k) =

Z
Rd
e�ik:xe�"x

2
f(x)dx:

So

f̂(k) := Ff(k) := lim
"�!0+

f̂"(k)
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exists and is called the Fourier transform of f .

The limit is to be understood in the sense L2, that is to say that :

Z ���f̂(k)� f̂"(k)���2 dk �! 0 when " �! 0:

The Fourier transformation extended to functions in the space L2(Rd) still has the same pro-

perties.

8.6 Application of Fourier transform to solve di¤erential equa-

tions

A powerful application of Fourier methods is in the solution of di¤erential equations. This is

because of the following identity for the FT of a derivative :

FT
h
f (p)(x)

i
= FT

�
dpf

dxp

�
= (ik)p ~f(k)

Thus applying a FT to terms involving derivatives replaces the di¤erential equation with an

algebraic equation for ~f , which may be easier to solve. Let�s remind ourselves of the origin of

this fundamental result. The simplest approach is to write a function f(x) as a Fourier integral :

f(x) =
R
~f(k)exp(ikx)dk=2�. Di¤erentiation with respect to x can be taken inside the integral,

so that df=dx =
R
~f(k)exp(ikx)dk=2�. From this we can immediately recognise ik ~f(k) as the

FT of df=dx. The same argument can be made with a Fourier series.

Fourier Transforms can also be applied to the solution of di¤erential equations. To introduce

this idea, we will run through an Ordinary Di¤erential Equation (ODE) and look at how we can

use the Fourier Transform to solve a di¤erential equation.

Consider the ODE in Equation :

d2y(t)

dt2
� y(t) = �g(t) (8.2)

We are looking for the function y(t) that satis�es Equation 8.2 above. We know that we can

take the Fourier Transform of a function, so why not take the fourier transform of an equation ?

It turns out there is no reason we can�t. And since the Fourier Transform is a linear operation,
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the time domain will produce an equation where each term corresponds to the a term in the

frequency domain. Taking the Fourier Transform of Equation 8.2 , we get Equation 8.3 :

F

�
d2y(t)

dt2

�
� F (y(t)) = F (�g(t))() F

�
d2y(t)

dt2

�
� Y (f) = �G(f) (8.3)

Hence, Equation 8.3 becomes :

(2�if)2 Y (f)� Y (f) = �G(f) (8.4)

Equation 8.4 is a simple algebraic equation for Y (f) ! This can be easily solved. This is the

utility of Fourier Transforms applied to Di¤erential Equations : They can convert di¤erential

equations into algebraic equations. Equation 8.4 can be easiliy solved for Y (f) :

Y (f) =
�G(f)

(2�if)2 � 1
=

G(f)

1 + 4�2f2
(8.5)

In general, the solution is the inverse Fourier Transform of the result in Equation 8.5. For this

case though, we can take the solution farther. Recall that the multiplication of two functions

in the time domain produces a convolution in the Fourier domain, and correspondingly, the

multiplication of two functions in the Fourier (frequency) domain will give the convolution in

the time domain. Hence, Equation 8.5 becomes :

y(t) = F�1 (Y (f)) = F�1
�

1

1 + 4�2f2
:G(f)

�
= F�1

�
1

1 + 4�2f2

�
� F�1 (G(f)) (8.6)

Equation 8.6 might not look helpful, but note that we already know the inverse Fourier Transform

for the left-most inverse Fourier transform in the second line of 8.6 : it�s one half of the two-sided

decaying exponential function. Hence, we can start to simplify equation 8.6 :

y(t) = F�1
�

1

1 + 4�2f2

�
� F�1 (G(f)) = e�jtj

2
� g(t)

=
1

2

Z +1

�1
e�jt�� jg(�)d�
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Now for the �ne print. When we went from Step 1 to Step 2, we assumed the Fourier Transform

for y(t) existed. This is a non-trivial assumption. You may recall from your di¤erential equations

class that the solution should also contain the so-called homogeneous solution, when g(t) = 0 :

d2yh(t)

dt2
� yh(t) = 0 =) yh(t) = c1e

t + c2e
�t (8.7)

The "total" solution is the sum of the solution we obtained in equation 8.6 and the homogeneous

solution yh of equation 8.7. So why does the homogeneous solution not come out of our method ?

The answer is simple : the non-decaying exponentials of equation 8.7 do not have Fourier Trans-

forms. That is, if you try to take the Fourier Transform of exp(t) or exp(�t), you will �nd the

integral diverges, and hence there is no Fourier Transform. This is a very important caveat to

keep in mind.
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