

UNIVERSITE MOHAMED KHIDER-BISKRA-

FACULTES DES SCIENCES EXACTES ET DES SCIENCES DE LA NATURE ET DE LA VIE

DEPARTEMENT DES SCIENCES DE LA MATIERE

Polycopié

THERMODYNAMIQUE ET CHIMIE DES SOLUTIONS MENERALE (Cours et exercices corrigés)

1^{ière} année LMD (Sciences de la Nature et de la Vie (SNV))

Dr. DAOUD Ismail

Maitre de conférences « A »

(Octobre 2023)

TABLE DES MATIERES

1. Généralité sur le calcul des concentrations

1.1. Définitions	01
1.2. Expressions de concentrations	01
1.2.1. La molarité	01
1.2.2. La normalité	02
1.2.3. La molalité	02
1.2.4. Le pourcentage en masse ou en poids d'une solution	02
1.2.5. Le pourcentage en volume d'une solution	03
1.2.6. Le pourcentage volumique	03
1.2.7. Fraction molaire	03
1.2.8. Densité d'une solution	03
1.3. Dilution (relation entre concentration et volumes)	03
1.4. Relation fondamentale relative aux normalités	04
1.5. Température	04
Exercices	05
Solutions	07
2. Equilibres chimiques	
2.1. Equilibre acido-basique	13
2.2. Monoacide et monobase	14
2.3. Polyacides et Polybases	14
2.4. Une solution amphotère	14
2.5. Réaction acido-basique	15
2.5.1. Constante d'équilibre : de dissociation de l'eau, d'acidité et de basicité	15
2.5.2. Le pH (potentiel d'Hydrogène):	16
Exercices	23
Solutions	24
2.6. Le pH des solutions salines	29
2.6.1. Le pH d'une solution d'acide forte et de base forte	29
2.6.2. Le pH d'une solution d'acide forte et de base faible	29
2.6.3. Le pH d'une solution d'acide faible et de base forte	30
2.6.4. Le pH d'une solution d'acide faible et de base faible	30
2.6.5. Le pH d'une solution tampon	31
Exercices	32
Solutions	33
2.7. Equilibre oxydoréduction	36
2.7.1. Réaction d'oxydoréduction : transfert d'électrons	36
2.7.2. Notion d'oxydation, de réduction et d'oxydo-réduction	36
2.7.3. Nombre d'oxydation (ou degré d'oxydation)	36
2.7.4. Ecriture des réactions d'oxydoréduction	37
2.7.5. Equilibrer une réaction oxydo-réduction	37
2.7.6. Application de l'oxydo-réduction	38
2.7.7. Potentiel d'électrode	39
2.7.8. Relation entre le potentiel standard et constante d'équilibre (K)	40
2.7.9. Influence du pH sur le potentiel d'électrode (Relation entre le E et le pH)	41
Exercices	42

Solutions	43			
2.8. Equilibre de précipitation : Solubilité et produit de solubilité				
2.8.1. Définition	50			
2.8.2. Relation entre produit de solubilité et solubilité	50			
2.8.3. Effet de l'addition d'un ion sur la solubilité	51			
2.8.4. Influence de pH sur la solubilité	52			
2.8.5. Effet de la température et de l'agitation	52			
2.8.6. Condition de précipitation	52			
Exercices	53			
Solutions	54			
3. Cinétique chimique				
3.1. Définition	59			
3.2. Vitesse de réaction	59			
3.3. Expression de la loi de vitesse, constante de vitesse et ordre d'une réaction	60			
3.3.1. Réaction d'ordre 0	60			
3.3.2. Réaction d'ordre 1	61			
3.3.3. Réaction d'ordre 2	62			
3.4. Facteurs influençant la vitesse de réaction	63			
3.4.1. Influence des concentrations	63			
3.4.2. Influence de la température sur la vitesse de réaction	63			
Exercices	64			
Solutions	65			
4. Thermodynamique				
	5 0			
4.1. Systèmes et grandeurs thermodynamiques	70			
4.1.1. Définitions	70			
4.1.2. Variables d'état, fonction d'état	71			
4.2. Transformation d'un système	72			
4.2.1. Les transformations réversibles	72			
4.2.2. Les transformations irréversibles	73			
4.2.3. Les transformations cycliques	73			
4.2.4. Les transformations ouvertes	73			
4.2.5. Les transformations adiabatiques	73			
4.2.6. Les transformations isochores	73			
4.2.7. Les transformations isobares	73			
4.2.8. Les transformations isothermes	73			
4.2.9. Les transformations quasi-statiques	73			
4.2.10. Les transformations chimiques	73 73			
4.3. Divers types d'énergie	73 74			
4.4. Premier principe de la thermodynamique	74			
4.4.1. Expression du travail et de la chaleur Exercices	79			
Solutions	80			
	84			
4.4.2. Expression de l'énergie interne et de l'enthalpie 4.4.3. Diagramme de Clapeyron	86			
Exercices	90			
Solutions	91			
	/ 1			

5. Thermochimie

5.1. Enthalpie de réaction	96
5.2. Enthalpie standard de réaction	96
5.3. Variations des chaleurs de réaction avec la température	96
5.3.1. Calcul des chaleurs de réaction	97
5.3.2. Calcul des chaleurs de réactions à partir des enthalpies de formation	98
5.3.3. Calcul des énergies de liaisons	98
5.3.4. Liaison ionique, énergie réticulaire (cycle de Born-Haber)	98
5.4. Second principe de la thermodynamique	99
5.4.1. Expression de l'entropie	100
5.4.2. Expression de l'énergie libre et de l'enthalpie libre	102
Exercices	104
Solutions	105
Références	107

1. Généralité sur le calcul des concentrations

1.1. Définitions :

La concentration noté « C » est la grandeur qui exprime la quantité de substance ou soluté mise en solution par unité de volume (de solvant).

- La substance dissoute dans un liquide est appelée Soluté.
- Le liquide qui dissout s'appelle le solvant.
- Si le solvant est l'eau, c'est une solution aqueuse.

La concentration molaire notée : « C » :

$$C=\frac{n}{V}$$

C: la concentration molaire en mole par litre (mol/l).

n : la quantité de matière en moles (**mol**).

V : le volume de la solution en litres (L).

Le nombre de moles noté : « n » :

$$C=\frac{n}{V}$$

n : la quantité de matière en moles (**mol**).

m : la quantité de matière en grammes (g).

M : la masse molaire en gramme par mole (g/mol).

La concentration massique notée : « C_m » :

$$C_m = \frac{m}{V}$$

 C_m : la concentration massique en gramme par litre (g/l).

m: la quantité de matière en grammes (g).

V : le volume de la solution en litres (L).

Nous pouvons aussi calculer directement la concentration massique « C_m » par la relation suivante :

$$C_m = C \cdot M$$

C: la concentration molaire en mole par litre (mol/l).

M: la masse molaire en gramme par mole (g/mol)

1.2. Expressions de concentrations :

1.2.1. La molarité notée M (mol/l) :

La molarité (concentration molaire) est nombre des moles de soluté contenus dans un litre de solution.

Molarité s'exprime en mole par litre (mol/l)

Millimole par litre mmol/l (10⁻³ mol/l)

Micromole par litre µmol/l (10⁻⁶ mol/l)

Nanomole par litre nmol/l (10⁻⁹ mol/l).

Exemple 1: Une solution de HCl 0,1 molaire (0,1 M), c.à.d on a 0,1 mole de HCl dans 1L de solution.

Exemple 2: Une solution à 1/10M est une solution à 0,1M, c.à.d 1/10M=0,1 M; 1/100M=0,01 M

Remarque: a ne pas confondre avec l'abréviation « M » de la masse molaire.

1.2.2. La normalité notée N (N) :

La normalité est le nombre de mole d'équivalents (ou équivalents-gramme) dans 1 litre de solution. La mole équivalent est la quantité de substance comprenant 1 mole de particules considérées (H⁺, OH, e-,... etc).

 $Normalité = x_{eq} . Molarité$

x_{eq}: nombre de mole d'équivalents

<u>Exemple 1:</u> Une solution de HCl: HCl \rightarrow H⁺ + Cl⁻ $(x_{eq} = 1 \text{ car on a 1 proton H}^+)$

Exemple 2: Une solution de H_2SO_4 : $H_2SO_4 \rightarrow 2H^+ + HSO_4^-$ ($x_{eq}=2$ car on a 2 proton H^+).

Exemple 3: Une solution de H₂SO₄ N=2M

1.2.3.La molalité notée m (mol/Kg) :

Le nombre de mole de soluté contenus dans 1Kg de solvant.

La molalité est indépendante de la température.

Exemple : Une solution de KOH 0,3 molale (0,3m). c.à.d on a 0,3 mole de KOH dans 1Kg de solvant eau.

Remarque: a ne pas confondre avec l'abréviation « m » de la masse.

1.2.4. Le pourcentage en masse ou en poids d'une solution noté %P/P :

C'est la masse de soluté (en g) contenue dans 100g de solution.

$$\% \frac{\mathbf{p}}{\mathbf{p}} = \left(\frac{m_{solut\acute{e}}}{m_{solution}}\right).100$$

On l'appelle aussi pureté de la solution.

1.2.5. Le pourcentage en volume d'une solution noté %P/V :

C'est la masse de soluté (en g) contenue dans 100ml de solution.

$$\% \frac{p}{V} = \left(\frac{m_{solut\acute{e}}}{V_{solution}}\right).100$$

1.2.6. Le pourcentage volumique noté %V/V :

C'est le volume de soluté (en cm³) contenue dans 100cm³ de solution.

$$\% \frac{\mathbf{V}}{\mathbf{V}} = \left(\frac{V_{solut\acute{e}}}{V_{solution}}\right). 100$$

1.2.7. Fraction molaire:

La fraction molaire d'un constituant (soluté) ou pourcentage molaire (X%) est le rapport du nombre de moles de ce constituant i sur le nombre total de moles du mélange. La fraction molaire est sans unité.

$$\boldsymbol{X_i} = \left(\frac{n_i}{n_T}\right)$$

n_i: nombre de mole de soluté i

n_T: nombre totale de moles de la solution

Sachant que : $\sum X_i = 1$

1.2.8. Densité d'une solution :

La densité d'un corps est le rapport des sa masse volumique à la masse volumique d'un corps pris comme référence (l'eau pure)

$$d = \frac{\rho_{solution}}{\rho_{eau}}$$
 et on a aussi $d = \frac{m_{solution}}{v_{solution}}$

Or : $\rho_{eau} = 1 \text{ g/cm}^3 = 10^3 \text{ Kg/m}^3$

 $1 \text{ cm}^3 = 1 \text{ mL} \text{ et } 1 \text{ m}^3 = 10^{3 \text{L}}$

1.3. Dilution (relation entre concentration et volumes) :

Conservation de la quantité de matières ($\mathbf{n}_{initial} = \mathbf{n}_{final}$)

$$C_{initiale} \cdot V_{initial} = C_{finale} \cdot V_{final}$$
; $Avec: V_{final} = V_{initial} + V_{eau}$

Taux de dilution : il est exprimé par :

$$T = \frac{C_{finale}}{C_{initiale}} = \frac{V_{initial}}{V_{final}}$$

T : est toujours compris entre 0 et 1 sans unité.

1.4. Relation fondamentale relative aux normalités :

$$N_1 . V_1 = N_2 . V_2$$

 N_1 , V_1 , N_2 et V_2 étant respectivement les normalités et les volumes des deux solutions 1 et 2 qui ont réagi ensemble.

1.5. Température « T »:

T est en Kelvin= t(en degré Celsius (°C) + 273,15

Exercices

Exercice N°1: Les questions 1, 2 et 3.

- 1. Quels volumes respectifs de solutions aqueuses d'acide chlorhydrique 1,5 M et 0,8 M doit on mélange pour obtenir 600 ml d'une solution 1,2 M.
- 2. Quelle est la masse d'acide sulfurique pur contenue dans 200 cm³ d'une solution H₂SO₄ à 0,4N ?
- **3.** Quel volume d'eau faut-il ajouter à 200 ml de solution HCl (0,5M) pour obtenir une solution à 0,08 M.

Exercice N°2:

On dissout un morceau de sucre (saccharose) de masse 5g dans une tasse de 50 ml. Calculer sa concentration massique et sa molarité. $M(C_6H_{22}O_{11})=342$ g/mol.

Exercice N°3:

On prépare une solution aqueuse de concentration à 4% en HCl, la masse volumique de cette solution étant de 1,02 g/cm³, quelle est la molarité de cette solution ?

Exercice N°4:

Une solution aqueuse d'acétone (CH₃COCH₃) 1,29 m à une densité égale à 0,99. Quelle est sa molarité.

Exercice N°5:

La solubilité de sulfate d'aluminium est de 100 d dans 900 g d'eau. La densité de la solution saturée à 15° C est 1,106, $M_{Al2}(SO_4)=342$.

Calculer:

- 1. La molarité
- 2. La normalité
- 3. La molalité
- 4. La fraction molaire
- 5. Le pourcentage Poids/Poids
- 6. Le pourcentage Poids/Volume

Exercice N°6:

Calculer la molarité d'un litre d'une solution d'acide phosphorique de densité 1,08 à 65% en poids de H₃PO₄. Quelle est sa normalité.

On donne les masses molaires M en (g/mol): M(H)=1, M(C)=12, M(N), M(O)=16, M(Na)=23, M(S)=32, M(Cl)=35,5.

Exercice N°7:

Une solution d'hydrogénocarbonate de sodium NaHCO₃ a une fraction massique de 6% et une masse volumique égale à 1,0408 g/cm³.

Calculer la masse m de NaHCO₃ contenue dans un litre de solution.

Calculer la concentration molaire volumique (molarité) de NaHCO₃.

Exercice N°8:

Calculer les fractions molaires d'une solution d'acide sulfurique contenant 1,22 mole de H_2SO^4 dans 900 g d'eau.

Exercice N°9:

Calculer la concentration C en ions chlorures (en mol/L et g/L), d'une solution obtenue par mélange de deux solutions : 90,0 cm³ de NaCl, 750 M et 75,0 cm³ de CaCl₂ 0,60 M.

Exercice N°10:

2 Kg de solution d'acide phosphorique renferme 200 G d'acide phosphorique pur. Quelle est la molarité de la solution ? (ds_{olution}= 1,053)

Solutions

Exercice N°1:

1.

HCl
$$\begin{cases} C_1 = 1.5 \text{ M} \\ V_1 = ? \end{cases}$$
 $\begin{cases} C_2 = 0.8 \text{ M} \\ V_2 = ? \end{cases}$ $\begin{cases} C_3 = 1.2 \text{ M} \\ V_3 = 600 \text{ ml} \end{cases}$ $\begin{cases} C_1 \text{ V}_1 + C_2 \text{ V}_2 = C_3 \text{ V}_3 \\ V_1 + V_2 = V_3 \end{cases}$ $\begin{cases} 1.5 \text{ V}_1 + 0.8 \text{ V}_1 = 1.2 * 600 .10^{-3} \\ V_1 + V_2 = 0.6. \end{cases}$ $\begin{cases} V_1 = 0.343 \text{ L} \\ V_2 = 0.257 \text{ L} \end{cases}$

2.

La solution $H_2SO_4(2H^+, SO_4^-)$ $0,4N \Rightarrow N=0,4 \text{ eg/L}.$

$$Or : N = z*M \Rightarrow M=0,4/2=0,2 \text{ mol/L}$$

$$C=n/v \Rightarrow n=C*V = m/M \Rightarrow m=C*V*M$$

A.N:

 $m = 0.2*200.10^{-3}*98$

$$m=3,92 g$$

3.

$$\begin{array}{l} HCl \begin{cases} C_1 = 0.5 \ M \\ V_1 = 200 \ mL \end{cases} \begin{cases} C_2 = 0.08 \ M \\ V_2 = V_2 + V_{eau} \\ \end{array} \\ C_1 \ V_1 = C_2 \ V_2 \ \Rightarrow V_2 = C_1 \ V_1/C_2 \ \Rightarrow \ C_1 = 0.5*200.10^{-3}/0.08 \\ \end{array}$$

$$V_2 = 1.25 L = 1250 mL$$

Or:
$$V_2 = V_1 + V_{eau} \Rightarrow V_{eau} = V_2 - V_1$$

$$V_{eau} = 1250-200$$

$$V_{eau} = 1050 \text{ mL} = 1,05 \text{ L}$$

Exercice N°2:

$$M_{\text{(Sacharose)}} = 342 \text{ g/mol}$$

$$C_m = \frac{m}{V} = \frac{5}{50 \cdot 10^{-3}} = 100 g/L$$

$$m=\frac{m}{M}=\frac{5}{342}=0.01~mol~de~C_{12}H_{22}O_{11}g/L$$
 0.01 mol de soluté \rightarrow 0.05 L \Rightarrow n_s= 0.2 mol n_s = ?? \rightarrow 1L

 \Rightarrow la solution est 0,2 M (0,2 molaire)

Exercice N°3:

HCl 4%, de d=1,02 g/cm³

$$\Rightarrow n_S = \frac{m_S}{M_S} = \frac{0.0408}{36.5} = 0.0011 \ mol$$

$$m_{solut\acute{e}} = m_s + m_{H2O} \Rightarrow m_{solut\acute{e}} = m_s + m_{H_2O} \Rightarrow m_{H_2O} = m_{solut\acute{e}} - m_s$$

A.N:

$$\overline{m_{H_2O}} = 1,02 - 0,0408$$

$$m_{H_2O} = 0.9792 g$$

D'où 0,0011 mol
$$\rightarrow$$
 0,9792 g de H₂O \Rightarrow n_s= 1,14 mol n_s \rightarrow 100 g de H₂O \Rightarrow

D'où 1,14 mol/Kg ⇒ La soluté est 1,14 m ; 1,14 molale.=

Exercice N°4:

$$C = \frac{n}{V}$$

La solution est 1,29 m c.à.d. 1,29 mole de soluté acétone contenu dans 1 Kg de solvant H₂O.

Or:

$$n_{s} = \frac{m_{s}}{M_{s}} \implies m_{s} = n_{s} M_{s} = 1,29.58 = 74,82 g$$

$$m_{solut\'e} = m_{H_2O} + m_s = 1000 + 74,83 = 1074,83 \; g \; solut\'e$$

D'où:

$$V_{solut\acute{e}} = \frac{m_{solut\acute{e}}}{d} = \frac{1074,83}{0.99} = 1085,68 \ mL = 1,085 \ L$$

D'ou:
$$C = \frac{1,29}{1,085} = 1,18 \ mol/L$$

Exercice N°5:

On notera : S : soluté (Sulfate d'aluminium Al₂(SO₄)₃) et Solt : Solution dans cet exercice

1. Calcul de la Molarité :

 $m_s = 100 g$

$$m_{\text{solvant}} = m_{\text{H20}} = 900 \text{ g} \Rightarrow m_{\text{solution}} = m_{\text{s}} + m_{\text{H20}} = 1000 \text{ g}$$

Or:

$$d = \frac{m_{solt}}{V_{solt}} \Rightarrow V_{solt} = \frac{m_{solt}}{d} = \frac{1000}{1,106} = 904,15 \text{ mL}$$

$$V_{solt} = 904,15 \text{ mL}$$

$$n_s = \frac{m}{M} = \frac{100}{342} = 0,292 \ mol$$

Or: 0,292 mole de solute \rightarrow 904,15 mL

$$n_s=? \rightarrow 1000 \text{ mL}$$

 \Rightarrow n_s= 0,323 mol \Rightarrow la solution est 0,323 M (0,323 molaire)

Ou :
$$C = \frac{n}{v} = 0.323 \text{ mol/l}$$

2. Calcul de la Normalité : N = z * M

Or:
$$Al_2(SO_4)_3 \rightarrow 2A1^{+3} + 3SO_4^{2-}$$

$$\Rightarrow$$
 N= 6 * M = 6 * 0,323 = 1,938 N

Donc la solution est 1,938 normale.

3. Calcul de la Molalité :

 $100 \text{ g de soluté Al}_2(SO_4)_3 \rightarrow 900 \text{ g H}_2O$

$$m_{solut\acute{e}} = ? \rightarrow 1000 \text{ g H}_2\text{O}$$

$$\Rightarrow$$
 m_{soluté}= 111,11 g

$$\Rightarrow n_s = \frac{111,11}{342} = 0,325 \ mol$$

 \Rightarrow La solution est 0,325 m c.à.d. 0,325 molale.

4. Calcul de la fraction molaire:

$$x_i = \left(\frac{n_i}{n_T}\right) \Rightarrow x_s = \left(\frac{n_s}{n_T}\right) = \frac{0.292}{0.292 + \frac{900}{18}} = 0.0058 \approx 0.006 = 0.6\%$$

$$\Rightarrow x_{H_2O} = 1 - x_s = 1 - 0,006 = 0,994 = 99,4\%$$

5. Calcul le pourcentage %P/P:

Poids du sel/100 g de solution

$$100 \text{ g de solut\'e} \rightarrow 1000 \text{ g Solt}$$

$$m_{sel}=? \rightarrow 100 \text{ g Solt}$$

$$\Rightarrow$$
 m_{sel}= m_s = 10 g \Rightarrow %P/P = 10 %.

6. Calcul le pourcentage %P/V:

Poids du sel/100 mL de solution

$$100 \text{ g de soluté} \rightarrow 904,15 \text{ mL Solt}$$

$$m_s=? \rightarrow 100 \text{ mL Solt}$$

$$\Rightarrow$$
 m_s= 11,06 g \Rightarrow %P/V = 11,06 %.

Exercice N°6:

$$d = \frac{\rho_{solt}}{\rho_{eau}} \ et \ \rho_{solt} = \frac{m_{solt}}{V_{solt}}$$

$$\rho_{solt} = d * V \Rightarrow \rho_{solt} = 1,08 * 1 = 1,08 \text{ Kg} = 1080 \text{ g}$$

Or: 65% en poids
$$\Rightarrow$$
 65g H₃PO₄ \rightarrow 100 g solt m_s =? \rightarrow 1080 g solt

$$\Rightarrow$$
 m_s= 702 g

$$n_s = \frac{m}{M} = \frac{702}{98} = 7,16 \ mol$$

⇒ la solution est 7,16 mol/L c.à.d. 7,16 M

$$\Rightarrow$$
 N= z * M = 3 * 7,16

$$N = 21,48 \text{ eq/L}$$

Exercice N°7:

NaHCO₃ à 6%

$$d=1,0408 \Rightarrow m_{solt}=1,0408 g$$

6g de soluté NaHCO₃ → 100 g solt

$$m_s=? \rightarrow 1,0408 \text{ g solt}$$

$$\Rightarrow$$
 m_s= 6,24 10⁻² g or 6,24 10⁻² \rightarrow 1 cm³

$$m_s=? \rightarrow 1000 \text{ mL}$$

$$m_s$$
= 62,448 $g \approx 62,45 g$

 \Rightarrow

$$n_s = \frac{m}{M} = \frac{62,45}{84} = 0,74 \ mol$$

C=0,74 mol/l, c.à.d. la solution est: 0,74M

Exercice N°8:

On notera : s : soluté de H₂SO₄

$$x_s = \frac{n_s}{n_s + n_{H_2O}} = \frac{702}{1,22 + \frac{900}{18}} = 0,024$$

$$x_{H_2O} = \frac{n_{H_2O}}{n_s + n_{H_2O}} = \frac{\frac{900}{18}}{\frac{900}{18} + 1,22} = 0,976$$

Exercice N°9:

C_{Cl}=??? en mol/l et en g/l?

$$\frac{90 \ cm^3 NaCl \ 0.75 \ M}{C_1 V_1} + \frac{75 cm^3 CaCl_2 0.6M}{C_2 V_2}$$

$$C_{Cl} = \frac{n_{Cl}}{V_T} = \frac{C_1 V_1 + 2C_2 V_2}{V_T}$$

$$C_{cl} = \frac{[90*0.75 + 2(75*0.6)]10^{-3}}{165*10^{-3}} = 0.954 \, mol/l$$

Puis:

$$C_{Cl} = 0.954*M_{Cl} = 0.954*35.5 = 33.886$$

$$C_{Cl} \approx 33,89 \text{ g/l}$$

Exercice N°10:

$$H_3PO_4 \begin{cases} d=1,053 \\ M=??? \end{cases}$$

200g de soluté $H_3PO_4 \rightarrow 2000$ g solt

Or:
$$d = \frac{\rho_s}{\rho_{H2O}} = \frac{m_{solt}}{V_{solt}} \Rightarrow V_{solt} = \frac{m_{solt}}{d}$$

$$\Rightarrow V_{solt} = \frac{2000}{1,053} = 1899,33$$

$$V_{solt}=1899{,}33\,mL$$

Or:

$$n_s = \frac{m}{M} = \frac{200}{98} = 2,041 \ mol$$

(Masse molaire H₃PO₄= 98g/mol)

Or:

2,041 mol soluté $H_3PO_4 \rightarrow 1899,33 \text{ mL solt}$

$$n_s=? \rightarrow 1000 \text{ mL}$$

 \Rightarrow n_s= 1,074 mol d'ou la solution est 1,074 M ou 1,074 molaire

2. Equilibres chimiques

Un équilibre chimique est un équilibre dynamique (les vitesses directe et inverse sont égales) qui peut être atteint dans un sens comme dans l'autre (les concentrations des réactifs et des produits sont équivalentes). Quantitativement, tout équilibre chimique est caractérisé par une constante d'équilibre notée Kc relative à une réaction chimique. Cette constante est donnée par la loi d'action de masse est égale au rapport entre les concentrations des réactifs et des produits en solution.

2.1. Equilibre acido-basique:

Les acides et les bases sont connus depuis l'Antiquité par leurs effets. Sur le plan conceptuel, seules méritent d'être retenues les quatre approches théoriques développées de la fin du XIXe siècle jusqu'aux années 1960 : les théories d'Arrhenius (1887) et de **Brønsted-Lowry** (1923), ainsi que le modèle de **Lewis** (1923) complété de la classification de Pearson en 1963 (acides et bases durs et mous).

En chimie des solutions, la théorie la plus adaptée est celle de Brønsted-Lowry, à condition de conserver l'approche d'Arrhenius pour les bases que sont les hydroxydes métalliques.

a. Définition d'Arrhénius (1887) :

<u>Un acide</u>: est une substance chimique capable de libérer des ions H+ (protons) en solution aqueuse $(H_3O^+$: ion oxonium ou hydronium).

Exemple:
$$HA + H_2O \rightleftharpoons A^- + H_3O^+$$
 (HCl, CH₃COOH,)

<u>Une base</u>: est une substance chimique capable de libérer des ions OH⁻(hydroxyde) en solution aqueuse

Exemple: BOH +
$$H_2O \rightleftharpoons B^+$$
 + OH (NaOH, KOH,)

b. Définition de Bronsted et Lowry (1923) :

Un **acide :** est une espèce chimique susceptible de libérer un ou plusieurs protons H^+ ; c'est un donneur de proton.

Exemple:
$$HA + H_2O \rightleftharpoons A^+ + H_2O (HCl, CH_3COOH,)$$

Une **base** : est une espèce chimique susceptible de capter un ou plusieurs protons H⁺ ; c'est un accepteur de proton.

Exemple:
$$A^- + H^+ \rightleftharpoons HA$$

c. Définition de Lewis (1923) :

Un acide : est un corps accepteur d'une paire d'électrons

<u>Exemple</u>: $H_2O + H^+ \rightleftharpoons H_3O^+$ (apparaissions d'une liaison dative).

Une base : est un corps donneur d'une paire d'électrons

<u>Exemple</u>: $NH_3 + H^+ \rightleftharpoons NH_4^+$ (apparaissions d'une liaison dative).

Remarque:

- 1. La perte de proton H⁺ par l'acide ne se fait qu'en présence de la base qui le fixe. Il y a simultanément **dé-protonation** de l'acide et **protonation** de la base. La particule élémentaire H+ est donc échangée sans être libérée dans les solutions.
- 2. Tous ions positifs est un acide de Lewis et tous ions négatifs est une base de Lewis.
- 3. Il existe par ailleurs des acides de Lewis accepteurs d'électrons (électrophile) tel que BF₃, AlCl₃.
- 4. C'est la définition donnée par Brönsted que nous adopterons dans l'étude qui suite.

2.2. Monoacide et monobase :

D'après Bronsted un acide est une espèce pouvant libérer un proton H+ pour le donner à une autre espèce, et une base est une espèce susceptible de capter un proton en provenance d'une autre espèce.

Acide
$$\rightleftharpoons$$
 Base + (H⁺ + H₂O)

L'acide et la base sont dits : « Conjugués); ils forment un couple acido-basique noté : Acide/Base).

Exemple:

$$CH_3COOH + H_2O \rightleftharpoons CH_3COO^- + H_3O^+$$
; Couple (CH_3COOH/CH_3COO^-)

L'ion acétate CH₃COO- est la base conjuguée de l'acide acétique CH₃COOH.

2.3. Polyacides et Polybases:

Un polyacide est une est une espèce pouvant libérer 2 ou plusieurs protons (H^+) pour les donner à une autre espèce, et une base est une espèce susceptible de fixer 2 ou plusieurs protons (H^+) en provenance d'une autre espèce.

2.4. Une solution amphotère :

Un **amphotère** (ou **ampholyte**) est une espèce chimique qui peut se comporter soit comme un acide, soit comme une base. Les solutions correspondantes sont dites « Amphotères).

<u>Exemple 1</u>: *H*₂*O* :

Couple 1
$$(H_3O^+/H_2O): H_3O^+ \Rightarrow H_2O + H^+$$

Couple 2
$$(H_2O/OH^-)$$
: $H_2O \rightleftharpoons H^{+} OH^{-}$

Réaction totale:
$$2H_2O \rightleftharpoons H_3O^+ + OH^-$$
 (Réaction d'auto-protolyse)

Exemple 2:

Couple 1
$$(H_2S/HS^-): H_2S \Rightarrow HS^- + H^+$$

Couple 2 (HS⁻/S⁻): HS⁻
$$\rightleftharpoons$$
 S⁻² + H⁺

Réaction totale:
$$2 \text{ HS}^- \rightleftharpoons \text{H}_2\text{S} + \text{S}^{-2}$$

2.5. Réaction acido-basique:

Une réaction acido-basique est une réaction de transfert de proton entre 2 couples : Acide 1/Base 1 et Acide2/Base2

Acide 1/Base 1: Acide
$$1 \rightleftharpoons Base 1 + H_3O^+$$

Acide 2/Base 2: Base
$$2 + H_2O \rightleftharpoons$$
 Acide 2

Réaction totale : Acide $1 + Base 2 \Rightarrow Base 1 + Acide 2$

2.5.1. Constante d'équilibre : de dissociation de l'eau, d'acidité et de basicité :

Il existe quatre constantes d'équilibre : K, Ke, Ka, Kb

a. Constante d'équilibre d'une réaction (K): (15)

La constante d'équilibre K de toute réaction acido-basique est donnée par la loi d'action de

masse:
$$aA + bB \rightleftharpoons cC + dD$$

$$K = \frac{[C]^c \cdot [D]^d}{[A]^a \cdot [B]^b}$$

Ou [A], [B], [C] et [D] : sont les concentrations des espèces A, B, C et D à l'équilibre.

b. Constante de dissociation de l'eau (Ke):

L'équilibre d'auto-protolyse d'eau : $2H_2O \rightleftharpoons H_3O^+ + OH^-$

$$K = \frac{[H_3O^+] \cdot [OH^-]}{[H_2O]}$$
 $Ke = K \cdot [H_2O] = [H_3O^+] \cdot [OH^-]$

On appelle Ke: produit ionique de l'eau: $Ke = K \cdot [H_2O] = [H_3O^+] \cdot [OH^-]$

Calcul la concentration de l'eau [H₂O] :

A t=25 C°, Ke =
$$10^{-14}$$
 \Rightarrow pKe = 14.

On a :
$$C(H_2O) = n(H_2O)/V(H_2O)$$
 et $\rho(H_2O) = m(H_2O)/V(H_2O) = 1g/ml$ (ou: 1 g/cm³)

On prend m(H₂O)= 1 g \Rightarrow V(H₂O)= 1 ml n(H₂O)= m(H₂O)/ M(H₂O) = 1/18=0.05555 mol (M(H₂O)= 2 (1)+16= 18 g/mol)) C(H₂O)= 0.0555555/1.10⁻³ \Rightarrow C(H₂O)= 55.55 mol/l.

c. Constante d'acidité (Ka):

Soit un acide faible :
$$AH + H_2O \rightleftharpoons A^- + H_3O^+$$
 (Couple : HA/A^-)

$$A^{-}$$
)
La constante d'équilibre : $K = \frac{[H_3O^+] \cdot [A^-]}{[H_2O] \cdot [AH]}$

La constante d'équilibre de dissociation de l'acide appelé « constante d'acidité Ka :

$$Ka = K \cdot [H_2O] = \frac{[H_3O^+] \cdot [A^-]}{[AH]}$$

Sachant que : pka= - log Ka

Remarque:

d. Constante de basicité (Kb):

Soit une base faible :
$$B + H_2O \rightleftharpoons BH^+ + OH^- (Couple : BH^+/B)$$

La constante d'équilibre :

$$K = \frac{[BH^+] \cdot [OH^-]}{[H_2O] \cdot [B]}$$

La constante d'équilibre de dissociation de l'acide appelé « constante d'acidité Kb :

$$Kb = K \cdot [H_2O] = \frac{[BH^+] \cdot [OH^-]}{[B]}$$

Remarque:

La relation entre Ka et Kb: Ke = Ka. Kb

2.5.2. Le pH (potentiel d'Hydrogène):

a. Définition de pH: (16) l'acidité d'une solution aqueuse dépond de la concentration en ions
 H₃O⁺.

$$pH = - log H_3O^+$$
 (p=-log; $H = H_3O^+$)

b. Relation entre le pH, pka et les concentrations :

Soit un acide faible : $Acide(AH) + H_2O \rightleftharpoons Base(A^-) + H_3O^+$ (Couple : HA/A^-)

$$Ka = \frac{[H_3O^+] \cdot [Base]}{[Acide]} = \frac{[H_3O^+] \cdot [A^-]}{[AH]}$$

Ka. [Acide] =
$$[H_3O^+]$$
. [Base] \Rightarrow $[H_3O^+]$ = Ka. [Acide] / [Base]

$$-\log[H_3O^+] = -\log (\text{Ka . [Acide]} / [\text{Base]});$$
 (On a : pH= - log H₃O⁺ pka= - log Ka)

$$pH = pka + log \frac{[Base]}{[Acide]}$$
 Relation d'Henderson

> Le pH de l'eau :

L'équilibre d'auto-protolyse d'eau : $2H_2O \rightleftharpoons H_3O^+ + OH^-$

Dans l'eau pure les quantités d'ions H_3O^+ et OH^- sont égales $\Rightarrow [H_3O^+] = [OH^-]$

A t=25 C° Ke=
$$10^{-14}$$
, [H₃O⁺]. [OH⁻] = Ke= 10^{-14} \Rightarrow [H₃O⁺]² = Ke= 10^{-14}
 \Rightarrow [H₃O⁺] = $\sqrt{\text{Ke}} = \sqrt{10^{-14}} = 10^{-7} \Rightarrow -\log[\text{H}_3\text{O}^+] = -\log 10^{-7}$

$$pH(H_2O)=7$$

Remarque:

Solution neutre : $[H_3O^+] = [OH^-] \Rightarrow pH = 7$.

Solution acide : $[H_3O^+] > [OH^-] \Rightarrow pH < 6.5$.

Solution basique : $[H_3O^+] < [OH^-] \Rightarrow pH > 7.5$.

Le pH d'un monoacide fort :

Lorsqu'on dissout dans l'eau un Acide Fort (HA) de concentration initiale C_0 , On a une dissociation totale de l'acide :

Soit le Couple (HA/A^{-}) :

$$AH + H_2O \rightleftharpoons A^- + H_3O^+$$
A t=0 C₀ - 0 0
A t=eq 0=C₀-C₀ - C₀ C₀

Dans le cas des solutions peu dilués (c.à.d : $C_0 > 3 \cdot 10^{-7}$ mol/l), le milieu est suffisamment acide pour que $[OH^-]$ issu de l'autoprotolyse de l'eau soit négligeable devant $[H_3O^+]$.

Ceci signifié que : $[H_3O^+] = C_0$; et on $pH = -log[H_3O^+] = -log C_0$

$$\Rightarrow$$
 pH = -log C₀ ([H₃O⁺] = C₀).

Validation de l'approximation:

Pour que je suis sure et le l'acide est fort il faut que : $[H_3O^+] \ge 10 [OH^-]$

Démonstration:

$$\begin{split} [H_3O^+] \, . \, [H_3O^+] \, & \geq \, 10 \; [OH^-] \, . \, [H_3O^+] \\ [H_3O^+]^2 \, & \geq \, 10 \; \text{ Ke} \quad \Rightarrow \, \grave{a} \; t = 25 C^\circ \; , \, \text{on a Ke} = 10^{-14} \; \Rightarrow [H_3O^+]^2 \, \geq \, 10 \; . \; 10^{-14} \; \Rightarrow [H_3O^+]^2 \, \geq \, 10^{-13} \\ \Rightarrow \, [H_3O^+] \, & \geq \, \sqrt{10^{-13}} = \; 10^{-6.5} \, \Rightarrow \, -\log[H_3O^+] \, \leq \, -\log 10^{-6.5} \, \Rightarrow \qquad (\text{ Rappel: log } 10^x = x) \\ \Rightarrow \, pH \, & \leq \, 6.5 \end{split}$$

Résumé:

Acide Fort (A.F):

pH (A.F)=
$$-\log C_0$$
 ([H₃O⁺] = C₀). Avec pH ≤ 6.5 (à t=25C°)

> Le pH d'une monobase forte :

Une base Forte (B) de concentration initiale C_0 , On a une protonation totale de la base : Soit le Couple (BH^+/B) :

$$B + H_2O \rightleftharpoons BH^+ + OH^-$$
A t=0 C₀ - 0 0
A t=eq 0=C₀-C₀ - C₀ C₀

Dans le cas des solutions peu dilués (c.à.d : $C_0 > 3 \cdot 10^{-7}$ mol/l), le milieu est suffisamment basique pour que [H_3O^+] issu de l'autoprotolyse de l'eau soit négligeable devant [OH^-].

Ceci signifié que : $[OH^-] = C_0$;

$$\begin{split} & [H_3O^+] \cdot [OH^-] = C_0 \cdot [H_3O^+] \ \ \, \Rightarrow \ \ \, \text{Ke} = \ \, C_0 \cdot [H_3O^+] \ \ \, \Rightarrow \ \, [H_3O^+] = \text{Ke} \, / \, C_0 \, \, . \\ & -\text{log}[H_3O^+] = -\text{log} \, (\text{Ke} \, / \, C_0) \quad (\text{ Rappel: log A/B= log A} - \text{log B}) \\ & \Rightarrow \text{pH} = -\text{log Ke} + \text{log } C_0 \, , \quad \Rightarrow \ \, \text{pH} = \text{pKe} + \text{log } C_0 \, , \quad [OH^-] = C_0 \end{split}$$

Validation de l'approximation:

Pour que je suis sure et le la base est forte il faut que : $[OH^-] > 10 [H_3O^+]$

<u>Démonstration</u>:

$$\begin{split} [OH^-] \, . \, [H_3O^+] &\geq 10 \, [H_3O^+] \, . \, [H_3O^+] \\ \text{Ke} \, &\geq 10 \, [H_3O^+]^2 \quad \Rightarrow \, \text{à} \, t = 25 \text{C}^\circ \, \text{on a Ke} = 10^{-14} \, \Rightarrow . \, 10^{-14} \geq 10 \, [H_3O^+]^2 \, \Rightarrow 10^{-15} \geq [H_3O^+]^2 \\ &\Rightarrow \sqrt{10^{-15}} = 10^{-7.5} \geq [H_3O^+] \, \Rightarrow \, -\text{log} 10^{-7.5} \leq \, -\text{log} [H_3O^+] \, \quad (\text{Rappel: log } 10^x = x) \\ &\Rightarrow \, \text{pH} \, \geq 7.5 \end{split}$$

Résumé:

Base Forte (B.F):

pH (B.F)= pKe + log
$$C_0$$
, ([OH $^-$] = C_0). Avec pH ≥ 7.5 (à t=25C $^\circ$)

> Le pH d'un monoacide faible :

Lorsqu'on dissout dans l'eau un Acide faible (AH) de concentration initiale C_0 , On a une dissociation partielle de l'acide :

Soit le Couple
$$(HA/A^{-})$$
: $AH + H_2O \rightleftharpoons A^{-} + H_3O^{+}$ (Couple : HA/A^{-})

L'équilibre d'auto-protolyse d'eau : $2H_2O \rightleftharpoons H_3O^+ + OH^-$

Quatre espèces sont présentes à l'équilibre en concentration : $[AH], [A^-], [H_3O^+]$ et $[OH^-]$

On peut écrire quatre relations entre ces quatre inconnues :

- **1.** Produit ionique : Ke = $[H_3O^+] \cdot [OH^-] \dots (1)$
- **2.** Constante d'acidité de couple (HA/A^{-}) : Ka = $[A^{-}]$. $[H_3O^{+}]/[AH]$ (2)
- 3. Concentration des éléments constitutifs du couple acido-basique: $C_0=[AH]+[A^-]....(3)$
- **4.** Électroneutralité de la solution : $[H_3O^+] = [AH] + [OH^-] \dots (4)$

Première approximation:

Le milieu est acide : $[H_3O^+] >> [OH^-]$, c.à.d: la $[OH^-]$ négligeable devant $[H_3O^+]$

La relation (4) devient : $[H_3O^+] = [AH](5)$

Deuxième approximation:

La dissociation de l'acide est faible, c.à.d: la concentration de la monobase conjuguée est négligeable devant celle de l'acide AH, ceci signifié que : [A-] << [AH]

La relation (3) devient : $C_0 = [AH] \dots (6)$

La relation (2) + (5) + (6), on obtient :
$$Ka = [H_3O^+]^2 / [AH] \Rightarrow [H_3O^+]^2 = Ka \cdot [AH]$$

$$\Rightarrow [H_3O^+] = \sqrt{(\text{Ka.[AH]})} \Rightarrow -\log[\text{H}_3O^+] = -\log(\text{Ka.[AH]})^{1/2}; \text{ (Rappel: log A/B= log A - log B)}$$

$$\Rightarrow$$
 pH= ½ (-log Ka - log[AH]) \Rightarrow pH= ½ (pKa - log[AH]) \Rightarrow pH= ½ (pKa - logC₀)

Domaine de Validation :

Le milieu est acide : $[AH] \ge 10 [A^-]$

Démonstration :

$$[AH] \ge 10 [A^-] \Rightarrow 10^{-1} \ge [A^-]/[AH] \Rightarrow \log 10^{-1} \ge \log [A^-]/[AH] \Rightarrow -1 \ge \log [A^-]/[AH]$$

 \Rightarrow pka -1 \ge pka + $\log [A^-]/[AH]$ (Rappel d'aprés la relation d'Henderson : pH = pka + $\log (\lceil base \rceil / \lceil acide \rceil)$

$$\Rightarrow$$
 pka -1 \geq pH \Rightarrow pH \leq pka -1

<u>Utilisation du coefficient de dissociation (αa) :</u>

L'approximation de l'acide faible repose sur l'hypothèse d'une faible dissociation.

On appelle: (α_a) : coefficient de dissociation = Nombre de moles dissocié de AH/ Nombre de moles initiale de AH, $\alpha_a = x/C_0$

Bilan de matière :

$$AH + H_2O \rightleftharpoons A^- + H_3O^+$$
 $A t=0 C_0 - 0 0$
 $A t=eq C_0- X - X X$
 $\alpha_a = X/C_0 C_0(1-\alpha_a) - C_0\alpha_a C_0\alpha_a$

$$Ka = [A^{\text{-}}] \; . \; \; [H_3O^{\text{+}}]/ \; [AH] = C_0\alpha_a \; . \; C_0\alpha_a/ \; C_0(1-\alpha_a) = C_0 \; \alpha_a^{-2}/(1-\alpha_a) \; \Rightarrow Ka = C_0\alpha_a^{-2}/(1-\alpha_a)$$

• Si $\alpha_a \le 0.1$ (la dissociation est faible ; inferieure à 10 %) \Rightarrow on peut négliger le α_a devant 1 : La relation devient : Ka = $C_0\alpha_a^2 \Rightarrow \alpha_a = \sqrt{(ka/C_0)} \le 10^{-1} \Rightarrow ka/C_0 \le 10^{-2}$.

Remarque: c'est la loi d'Ostwald qui indique que la dissociation augmente avec la dilution et un électrolyte faible très dilué se comporte comme un électrolyte fort. C'est pour cela que le calcul du pH des acides et des bases est applicable pour des solutions qui ne sont pas trop diluées

Récapitulation:

Acide faible (A.f):

pH (A.f)=
$$\frac{1}{2}$$
 (pKa - logC₀) . (à t=25C°)

Avec: $1/pH \le pka - 1$; $2/Si \alpha_a \le 0.1 \Rightarrow ka/C_0 \le 10^{-2}$.

> Le pH d'une monobase faible :

Une base faible (B) de concentration initiale C_0 , On a une protonation partielle de la base:

Soit le Couple
$$(BH^+/B)$$
: $B + H_2O \rightleftharpoons BH^+ + OH^-$

L'équilibre d'auto-protolyse d'eau : $2H_2O \rightleftharpoons H_3O^+ + OH^-$

Quatre espèces sont présentes à l'équilibre en concentration : [B], [BH⁺], [H₃O⁺] et [OH⁻]

On peut écrire quatre relations entre ces quatre inconnues :

- 1. Produit ionique : Ke = $[H_3O^+] \cdot [OH^-] \dots (1)$
- 2. Constante de basicité de couple (BH $^+$ /B): Kb = [BH $^+$] . [OH $^-$] / [B](2)
- 3. Concentration des éléments constitutifs du couple acido-basique: $C_0=[B]+[BH^+].....(3)$

4. Électroneutralité de la solution : $[BH^+] + [H_3O^+] = [OH^-] \dots (4)$

Première approximation:

Le milieu est acide : $[OH^-] >> [H_3O^+]$, c.à.d: la $[H_3O^+]$ négligeable devant $[OH^-]$

La relation (4) devient : $[BH^+] = [OH^-] \dots (5)$

Deuxième approximation:

La protonation de la base est faible, c.à.d: la concentration de la monoacide conjugué est négligeable devant celle de la base B, ceci signifié que : [BH⁺] << [B].

La relation (3) devient : $C_0 = [B]....(6)$

$$Kb = [BH^+] \cdot [OH^-] / [B] \cdot \dots \cdot (2)$$
 (Rappel: ka . kb = ke; ke = $[H_3O^+] \cdot [OH^-]$)

$$\Rightarrow$$
 ke/ka = [BH⁺] ke/[B] [H₃O⁺] \Rightarrow ke . [B] . [H₃O⁺] = ka . [BH⁺] . ke

$$\Rightarrow$$
 ka = [B] . [H₃O⁺] / [BH⁺](7)

La relation (7) + (5) + (6), on obtient : $ka = C_0$. $[H_3O^+] / [OH^-] \Rightarrow ka = C_0$. $[H_3O^+]^2 / ke$

⇒
$$[H_3O^+]^2 = (Ka \text{ ke } /C_0)$$
 ⇒ $[H_3O^+] = \sqrt{(Ka \text{ ke } /C_0)}$ ⇒ $-\log[H_3O^+] = -\log(\text{ke } Ka /C_0)^{1/2}$; (Rappel: $\log A/B = \log A - \log B$, $\log A.B = \log A + \log B$)

$$\Rightarrow$$
 pH= ½ (-log Ka -log Ka + logC₀) \Rightarrow pH= ½ (pke + pKa + logC₀)

Domaine de Validation :

Le milieu est basique : $[B] \ge 10 [BH^+]$

Démonstration:

$$[B] \ge 10 [BH^+] \Rightarrow 10^{-1} \ge [BH^+]/[B] \Rightarrow [B]/[BH^+] \ge 10 \Rightarrow \log[B]/[BH^+] \ge \log 10$$

 \Rightarrow pka + log[B]/[BH⁺] \geq pka + 1 (Rappel d'aprés la relation d'Henderson : pH = pka + log ([base]/[acide])

$$\Rightarrow$$
 pH \geq pka + 1

Utilisation du coefficient de dissociation (α_b):

L'approximation de la base faible repose sur l'hypothèse d'une faible protonation

On appelle: (α_b) : coefficient de dissociation = Nombre de moles dissocié de [B]/ Nombre de moles initiale de [B], $\alpha_b = x/C_0$

Bilan de matière :

$$A_b = X/C_0$$
 $C_0(1-\alpha_b)$ - $C_0\alpha_b$ $C_0\alpha_b$

$$Kb = [BH^+] \cdot [OH^-] / [B]$$
 (Rappel: ka . kb = ke; ke = $[H_3O^+] \cdot [OH^-]$)

$$\Rightarrow$$
 ke/ka = [BH⁺] ke/[B] [H₃O⁺] \Rightarrow ke . [B] . [H₃O⁺] = ka . [BH⁺] . ke

$$\Rightarrow ka = [B] \cdot [H_3O^+]/[BH^+] \Rightarrow ka = Ke \cdot [B]/[BH^+][OH^-] \Rightarrow ka = ke \cdot C_0(1-\alpha_b)/C_0\alpha_b \cdot C_0\alpha_b$$

$$\Rightarrow$$
 ka = ke $(1-\alpha_b) / C_0 \alpha_b^2$

• Si $\alpha_b \le 0.1$ (la protonation est faible ; inferieure à 10 %) \Rightarrow on peut négliger le α_b devant 1 :

La relation devient : $Ka = ke/C_0\alpha_b^2 \Rightarrow \alpha_b = \sqrt{(ke/kaC_0)} \leq 10^{-1} \Rightarrow ke/kaC_0 \leq 10^{-2}$.

Récapitulation:

Base faible (B.f):

$$pH = \frac{1}{2} (pke + pKa + logC_0)$$
 . (à $t=25C^{\circ}$)

Avec: $1/pH \ge pka + 1$; $2/Si \alpha_b \le 0.1 \Rightarrow ke/kaC_0 \le 10^{-2}$.

> Le pH d'une solution amphotère :

Soit la solution d'un sel NaHA (Exemple : Na HCO₃) de concentration C.

La dissociation totale de sel dans l'eau s'écrit : NaHA_(solide) → Na⁺ + HA⁻

HA est un ampholyte puisqu'il est l'acide de couple : HA A et de la base du H₂A/HA

Couple
$$(H_2A/HA^-)$$
: $H_2A + H_2O \rightleftharpoons HA^- + H_3O^+$

Couple (HA⁻/A⁻²): HA⁻ + H₂O
$$\rightleftharpoons$$
 A⁻² + H₃O⁺

Bilan totale :
$$2HA^{-}$$
 \rightleftharpoons H_2A + A^{-2}

Le bilan de cette réaction globale indique que : $[H_2A] = [A^{-2}]$

Soit : K_{a1} est la constante d'acidité de couple : $H_2A/HA^- \Rightarrow K_{a1} = [HA^-]$. $[H_3O^+]/[H_2A]$

 K_{a2} est la constante d'acidité de couple : $HA^{-}/A^{-2} \Rightarrow K_{a2} = [A^{-2}]$. $[H_3O^+]/[HA^-]$

$$K_{a1} \cdot K_{a2} = ([HA^{-}] \cdot [H_3O^{+}]/[H_2A]) \cdot ([A^{-2}] \cdot [H_3O^{+}]/[HA^{-}]) = [H_3O^{+}]^2 \cdot ([A^{-2}]/[H_2A])$$

$$[H_2A] = [A^{-2}]$$

 K_{a1} . $K_{a2} = [H_3O^+]^2 \Rightarrow pH = \frac{1}{2}$ (pka 1 + pka 2) (Nous remarquons que le pH est indépendant de la concentration (C))

Remarque:

Un ampholyte est une substance qui contient une charge négative et un hydrogène (peu importe le nombre de charge négative ou d'atome d'hydrogène)

Exercices

Exercice N°1:

- 1. Indiquer parmi les espèces suivantes, les acides, les bases et les ampholytes : CH₃COOH, NH₄⁺, H₂PO₄⁻, CH₃CH₂OH, S²⁻, Al³⁺.
- 2. Citer les couples acide/base conjuguée correspondant à chaque cas.

Exercice N°2:

Calculer le pH de chacune des solutions suivantes :

- 1. 22 gramme de HCl dans 0,5 L
- 2. ,8 grammes de H2SO4 dans 2L
- **3.** 17 gramme d'ammoniac dans 200 cL; pka (NH3)=9,26.
- **4.** NH4Cl (pka NH₄+/NH₃=9,2; C=0,4 mol/L)
- **5.** Calculer le pH d'une solution constituée de 50mL d'une solution d'acide sulfurique 0,2M et de 20mL d'acide chlorhydrique 0,3M.

Exercice N°3:

- Sachant que le produit ionique de l'eau à 100 °C est égal à 6.10⁻¹³.
- 1. Calculer le pH des solutions suivantes à cette température :
 - **a**) H₂O pure, **b**) HCl à 0.1 mol/l, **c**) NaOH à 0.2 mol/l.
- 2. Comparer ces valeurs de pH avec celles obtenues à 25 °C.

Exercice N°4:

- Dans une solution aqueuse d'acide formique HCOOH 0,2 M, l'acide est dissocié à 3%.
- 1. Calculer les concentrations à l'équilibre des espèces présentes en solution aqueuse.
- 2. En déduire le pKa de cet acide.

Exercice N°5:

• Trois solutions, d'acide sulfurique, d'acide chlorhydrique et d'acide propanoïque CH₃CH₂COOH (considère comme acide faible) ont même pH. 15 Cm³ d'une solution de soude NaOH 10⁻² M sont nécessaires pour neutraliser 200 Cm³ de la solution d'acide chlorhydrique, alors qu'il faut 40 Cm³ de la solution de soude pour neutraliser 10 Cm³ de la solution d'acide propanoïque.

Calculer:

- 1. Le pH commun aux trois solutions.
- 2. La molarité de chacune des solutions.
- 3. La constante d'acide de d'acide propanoïque

Solutions

Exercice N°1:

Les espèces	Les acides	Les bases	Les ampholytes
CH ₃ COOH	S ⁻²		$H_2PO_4^-$
NH ₄ ⁺			
CH ₃ C H ₂ OH			
Al ⁺³			

$$CH_3COOH + H_2O \rightleftharpoons CH_3COO^- + H_3O^+$$
 (CH_3COOH/CH_3COO^-)

$$NH_4^+ + H_2O \rightleftharpoons NH_3 + H_3O^+ (NH_4^+/NH_3)$$

$$H_2PO_4^- + H_2O \rightleftharpoons H_3PO_4 + OH^-$$
 $(H_3PO_4/H_2PO_4^-)$

$$H_2PO_4^- + H_2O \rightleftharpoons HPO_4^{-2} + H_3O^+ \qquad (H_2PO_4^-/HPO_4^{-2})$$

$$S^{-2} + H_2O \rightleftharpoons HS^- + OH^-$$
 (HS⁻/S⁻²)

$$Al(SO_4)_3 \rightleftharpoons 2Al^{+3} + 3SO_4^{-2}$$

L'ion Al⁺³ est un cation acide (de Lewis) et le sulfate est un anion basique (de Lewis).

Exercice N°2:

1. HCl est un acide fort \Rightarrow pH= -log([H₃O⁺])= -log C_a

$$C_a = \frac{n_a}{V} = \frac{\frac{m_a}{M}}{V} = \frac{22}{36,5.0,5} = 1,205 \text{ mol/l}$$

$$pH = 0,08$$

2. H₂SO₄ est un diacide fort donc : pH= -log 2C_a

$$pH = -log2C_a = -log2\frac{\frac{m}{M}}{V} = \frac{9.8}{98.2}$$

$$pH = 1$$

3. NH₃ est une base faible $pH = 7 + \frac{1}{2}(pk_a + logC_b)$

$$pH = 7 + \frac{1}{2}(9.26 + \log \frac{17}{17.200.10^{-2}}) \approx 11.48$$

$$pH = 11,48$$

4. NH₄Cl NH₄+/Cl⁻

Cl⁻: sont des ions aprotiques, donc le pH sera déterminé par les ions NH₄⁺, qui présente un caractère d'acide faible (acide conjugué de la base NH₃) \Rightarrow $pH = \frac{1}{2}(pk_a - logC_a) = \frac{1}{2}(9.2 - log 0.4) \approx 4.8$

$$pH = 4.8$$

5. On a deux acides forts : H_2SO_4 (C_1V_1) et HCl ((C_2V_2)

$$\mathrm{pH} = -\log \Sigma [\mathrm{H}_3\mathrm{O}^+] \ \mathrm{or} \ [H_3O^+](pour \ H_2SO_4) = 2 \ . \frac{c_1 V_1}{V_T}$$

$$[H_3O^+](pour\ H_2SO_4) = 2.\frac{0.2.50.10^{-3}}{(50+20)10^{-3}} = 0.285\ mol/l$$

$$[H_3O^+](pour\ HCl) = \frac{n}{V_T} = \frac{0.3.20.10^{-3}}{(50+20)10^{-3}} \approx 0.086\ mol/l$$

$$pH = -log([H_3O^+](pour H_2SO_4) + [H_3O^+](pour HCl)) = -log(0.285 + 0.086)$$

$$pH = 0.43$$

Exercice N°2:

Ke= [H_3O^+][OH^-]= 6 10^{-13} à 100 °C de l'eau pure.

 $Ke=[H_3O^+][OH^-]=10^{-14}$ à 25 °C de l'eau pure

Calcul le pH des 3 solutions à 100 °C :

1- Calcul le pH de H₂O pure à 100 °C et à 25 °C

La réaction d'autoprotolyse de l'eau est : $2 H_2O \rightleftharpoons H_3O^+ + OH^-$

Le produit ionique de l'eau est $Ke=[H_3O^+][OH^-]$,

Sachant que dans l'eau pure on a : $[H_3O^+] = [OH^-]$ et $Ke=10^{-14}$

$$\Rightarrow$$
 Ke= $10^{-14} = [H_3O^+]^2$

$$\Rightarrow$$
 [H₃O⁺] = $\sqrt{\text{Ke}} = \sqrt{10^{-14}} = 10^{-7}$

A.N:

A 100 °C, Ke=
$$6 \times 10^{-13}$$
, pH=- $\log \sqrt{\text{Ke}}$

$$\Rightarrow$$
 pH=-log $\sqrt{6}$ 10⁻¹³ \Rightarrow pH=6,11

A 25 °C, Ke=
$$10^{-14}$$

$$\Rightarrow$$
 pH=-log $\sqrt{10^{-14}}$ \Rightarrow pH=7.

2- Calcul le pH de HCl (0,1 mol/l) à 100 °C et à 25 °C

La réaction de dissociation de HCl dans l'eau est :

$$HC1 + H_2O \rightleftharpoons C1^- + H_3O^+$$

HCl est une acide fort donc: $[H_3O^+] = 0.1 \text{ mol/l}$ et pH = $-\log([H_3O^+])$

A.N:

A 100 °C, pH=-log(
$$[H_3O^+]$$
)

$$\Rightarrow$$
 pH=-log(0,1) \Rightarrow pH= 1

$$\Rightarrow$$
 pH=-log(0,1) \Rightarrow pH= 1

3- Calcul le pH de NaOH (0.2 mol/l) à 100 °C et à 25 °C

La réaction de dissociation : NaOH $+ H_2O \rightleftharpoons Na^+ + OH^-$

NaOH est une base forte donc: $[OH^-] = 0.2 \text{ mol/l}$ et pH = pke+-log($[OH^-]$)

A.N:

A 100 °C,
$$pH = pke + -log([OH^{-}])$$

$$\Rightarrow$$
 pH = 6 10⁻¹³ + -log(0,2) \Rightarrow pH= 11,52

A 25 °C, pH = pke +
$$-\log([OH^{-}])$$

$$\Rightarrow$$
 pH = $10^{-14} + -\log(0.2) \Rightarrow$ pH = 13.30.

Comparaison:

Le pH de HCl ne change pas avec la température car il ne dépend pas de Ke (même chose pour l'acide faible).

Le pH de l'eau est celui de NaOH diminuent quand la température augmente (même chose pour la base faible).

Exercice N°3:

L'acide formique est un acide faible en solution aqueuse :

a. Les concentrations à l'équilibre des espèces chimiques présentes dans la solution sont :

$$[HCOOH] = 0.2 (1-0.03) = 0.194 M.$$

$$[H_3O^+] = \alpha C = 0.03*0.2 = 6*10^{-3} M.$$

$$[HCOO^{-}] = \alpha C = 6*10^{-3} M.$$

b. α est faible (3%) nous pouvons écrire :

On a un $\alpha \le 0.1$ (10%) c.à.d. la condition est vérifiée.

pKa =
$$-\log(\alpha^2C) = -\log[(3*10^{-2})^2*0.2] = 3.75$$

Exercice N°4:

Trois solutions d'acides : 1-Acide sulfurique : H₂SO₄

2-Acide chloridrique: HCl

3-Acide propanoïque: CH₃CH₂COOH

Ont même pH

Neutralisation 1:

$$NaOH: \begin{cases} V_b = 15 \text{ cm3} \\ C_b = 10^{-2} \text{ M} \end{cases} \qquad HCl: \begin{cases} V_a = 200 \text{ cm3} \\ C_a = ??? \text{ M} \end{cases}$$

HCl:
$$V_a = 200 \text{ cm}$$
3

Neutralisation 2:

$$NaOH: \begin{cases} V_{b}=15 \text{ cm}3 \\ C_{b}=10^{\text{-}2} \text{ M} \end{cases}$$

$$CH_3CH_2COOH: \begin{cases} V_a = 10 \text{ cm} 3 \\ C_a = ??? M \end{cases}$$

1. Calcul le pH commun aux trios solutions :

On a une neutralisation entre NaOH et HCl

D'après la loi de neutralisation : $N_a V_a = N_b V_b \implies N_a = ???$, $N_a = Z C_a$

$$N_a = \frac{N_b V_b}{V_a}$$

 $NaOH + H_2O \rightleftharpoons Na^+ + OH^-(Z: nombre de OH^- = 1)$

$$HCl + H_2O \rightleftharpoons Cl^- + H_3O^+ (Z: nombre de H_3O^+ = 1)$$

$$Z=1 \Rightarrow N_a=C_a$$
 et $N_b=C_b \Rightarrow C_a V_a=C_b V_b$

$$C_a = \frac{C_b V_b}{V_a} = \frac{15 \ 10^{-2}}{200} = 7.5 \ 10^{-4}$$

$$N_a = C_a = C_{HCl} = 7.5 \ 10^{-4} \ mol/l$$

On peut calcul le pH de la solution puisque la concentration de l'acide a été déterminée.

HCl est un acide fort \Rightarrow pH = -log C₀ = -log [H₃O⁺]

A.N:
$$pH = -log 7.5 \ 10^{-4} = 3.12 \implies pH = 3.12 \ (H_2SO_4, HCl et CH_3CH_2COOH)$$

2. Calcul la molarité de toutes les solutions :

L'acide chloridrique (HCl) est un mono acide fort, sa molarité est : $C_{HCl} = 7,5 \ 10^{-4} \ mol/l$ L'acide sulfurique (H₂SO₄) est un diacide fort, sa molarité est : $C_{H2SO4} = C_{HCl}/2 = 7,5 \ 10^{-4}/2$ $\Rightarrow C_{H2SO4} = 3,75 \ 10^{-4} \ mol/l$

D'après la Neutralisation 2 :

D'après la loi de neutralisation : $N_a V_a = N_b V_b \implies N_a = ???$, $N_a = Z C_a$

$$N_a = \frac{N_b V_b}{V_a}$$

 $NaOH + H_2O \rightleftharpoons Na^+ + OH^-(Z: nombre de OH^- = 1)$

 $CH_3CH_2COOH + H_2O \rightleftharpoons CH_3CH_2COO^- + H_3O^+ (Z: nombre de H_3O^+ = 1)$

 $Z=1 \Rightarrow N_a=C_a$ et $N_b=C_b \Rightarrow C_a V_a=C_b V_b$

$$C_a = \frac{C_b V_b}{V_a} = \frac{40 \ 10^{-2}}{10} = 4 \ 10^{-2}$$

$$N_a = C_a = C_{CH3CH2COOH} = 4 \ 10^{-2} \ mol/l$$

3. Calcul de la constante d'acide de d'acide propanoïque :

L'acide propanoïque est un acide faible \Rightarrow pH= ½ (pka – logC)

$$pka = 2 pH + logC$$

A.N: pka = 2 (.12) + log(4
$$10^{-2}$$
)
 \Rightarrow Ka = 1.41 10^{-5}

2.6. Le pH des solutions salines :

On appelle sel toute espèce neutre qui, en solution. Ils sont toujours formés à la neutralisation par réaction entre acide et base.

Acide (na, Ca, Va) + base (nb, Cb, Vb)
$$\rightarrow$$
 Sel + H₂O

Exemples: NaCl, NH4NO3.

2.6.1. Le pH d'une solution d'acide forte et de base forte :

Soit la réaction de neutralisation suivante:

$$HCl + NaOH \rightarrow NaCl_{(s)} + H_2O$$

En solution aqueuse, il y a dissolution totale du sel: NaCl_(s) (Chlorure de sodium)

$$NaCl_{(s)} + H_2O \rightarrow Na^+ + Cl^-$$

Cl⁻: Base conjuguée (très faible) d'un acide fort (HCl), Cl⁻: ne modifie pas le pH de la solution: Cl⁻: est inactif (ion indifférent ou spectateur), il ne participe à aucun équilibre acidobasique.

Na⁺: Acide conjugué (très faible) d'une base forte (NaOH), Na⁺: ne modifie pas le pH de la solution: Na⁺: est inactif (ion indifférent ou spectateur), il ne participe à aucun équilibre acido-basique.

$$pH(NaCl) = pH(H_2O) = \frac{1}{2} pka = 7$$
 à $t=25 C^{\circ}$

<u>Conclusion:</u> Les sels d'acides forts et de bases fortes se dissocient dans l'eau sans modifier le pH, la solution reste neutre.

2.6.2. Le pH d'une solution d'acide forte et de base faible :

Soit la réaction de neutralisation suivante:

En solution aqueuse, il y a dissolution totale du sel: NH₄Cl_(s) (Chlorure d'ammonium)

$$NH_4Cl_{(s)} + H_2O \rightarrow NH_4^+ + Cl^-$$

Cl⁻: Base conjuguée (très faible) d'un acide fort (HCl), Cl⁻: ne modifie pas le pH de la solution: Cl⁻: est inactif (ion indifférent ou spectateur), il ne participe à aucun équilibre acidobasique.

NH₄⁺: Acide conjugué (très faible) d'une base faible (NH₃), il participe à équilibre acidobasique.

Si : $[H_3O^+] >> [OH^-]$ et $[NH_4^+] >> [NH_3] \Rightarrow$ l'acide est faiblement dissocié.

$$pH(NH_4Cl) = pH(NH_4^+) = pH(Acide f. conjugué) = \frac{1}{2} (pka - log[NH_4^+])$$
 à t=25 C°

2.6.3. Le pH d'une solution d'acide faible et de base forte :

Soit la réaction de neutralisation suivante:

$$\begin{array}{cccc} CH_3COOH & + & NaOH & \rightarrow & CH_3COONa_{(s)} & + H_2O \\ \\ A.f & B.F & Sel \end{array}$$

En solution aqueuse, il y a dissolution totale du sel: CH₃COONa_(s) (Acétate de sodium)

$$CH_3COONa_{(s)} + H_2O \rightarrow CH_3COO^- + Na^+$$

CH₃COO⁻: Base conjuguée (très faible) d'un acide faible (CH₃COOH), il participe à équilibre acido-basique.

Na⁺: Acide conjugué (très faible) d'une base forte (NaOH), Na⁺: ne modifie pas le pH de la solution: Na⁺: est inactif (ion indifférent ou spectateur), il ne participe à aucun équilibre acido-basique.

 $Si: [OH^{-}] >> [H_3O^{+}]$ et $[CH_3COO^{-}] >> [CH_3COOH] \Rightarrow la base est faiblement protonée.$

$$pH(CH_3COONa) = pH(CH_3COO^-) = pH(Base f. conjugué) = \frac{1}{2} (Pke + pka + log[CH_3COO^-])$$

à $t=25 C^\circ$

2.6.4. Le pH d'une solution d'acide faible et de base faible :

Soit la réaction de neutralisation suivante:

CH₃COOH + NH₃
$$\rightarrow$$
 CH₃COONH_{4(s)} + H₂O
A.f Sel

En solution aqueuse, il y a dissolution totale du sel: CH₃COONH_{4(s)} (Acétate d'ammonium) de concentration= C

$$CH_3COONH_{4(s)} + H_2O \rightarrow CH_3COO^- + NH_4^+$$

CH₃COO⁻: Base conjuguée (très faible) d'un acide faible (CH₃COOH), il participe à équilibre acido-basique.

$$CH_3COOH + H_2O \rightarrow CH_3COO^- + H_3O^+ K_{a1}$$

NH₄⁺: Acide conjugué (très faible) d'une base faible (NH₃), il participe à équilibre acidobasique.

$$NH_4^+ + H_2O \rightarrow NH_3 + H_3O^+$$
 K_{a2}

Or le mélange entre un A. f et une B. f donne une solution faiblement acide ou faiblement basique ⇒ pH est voisin de 7

$$Si:C>>[H_3O^+] \ \ et \quad C>>[OH^-] \Rightarrow en \ faisant \ le \ produit \ K_{a1} \ . \ K_{a2}$$

pH (CH₃COONH₄) = $\frac{1}{2}$ (pka1 + pke) le pH est indépendant de la concentration initiale C.

2.6.5. Le pH d'une solution tampon :

Une solution tampon est définit comme un mélange d'un acide faible AH et de sa base conjuguée A- dans des proportions égales ou voisines.

L'expression de la constante d'acidité Ka du couple HA/A- est :

$$K_a = \frac{[A^-].[H_3O^+]}{[AH]} \implies [H_3O^+] = \frac{K_a.[AH]}{[A^-]}$$

D'où:
$$pH = pk_a - log \frac{[AH]}{[A^-]} \Leftrightarrow pH = pk_a - log \frac{[Acide]}{[Base]}$$

Remarque:

Une solution tampon peut être obtenue à partir d'un :

- ➤ Acide faible AH + une base faible A.
- > Acide faible HA + base forte.
- ➤ Base faible A- (sel NaA) + acide fort.

Les solutions tampon ont la propriété de minimiser les variations de pH provoquées par :

- > Une addition d'acide ou de base.
- > Une addition de solvant (dilution).

Exercices

Exercice N°1:

On dissout 26.75 g de chlorure d'ammonium NH₄Cl dans 1 l d'eau.

- 1. Calculer le pH de NH_4Cl sachant que le Ka du couple NH_4^+/NH_3 est égale à 5,6 .10⁻¹⁰.
- **2.** Combien de moles de NH_3 faut-il ajouter à la solution précédente pour obtenir une solution tampon de pH = 9.07 ?

On donne: la masse molaire (g/mol) des atomes: H(1), N(14), Cl(35.5).

Exercice N°2:

Le pH d'une solution saturée de H₂S est maintenu égal à 3.7

• Quelles sont les concentrations des espèces SH^- et S^{2-} dans cette solution, sachant que dans une solution saturée en H_2S .

On a:

 $[H_2S] = 0.1 \text{ mole/l}$

 H_2S/HS^- (Ka₁=10⁻⁷), HS^-/S^{2-} (Ka₂= 1.2 10⁻¹³).

Exercice N°3:

- On dispose des solutions suivantes:
- **1.** CH₃COOH à 0.5 mol/l et CH₃COONa à 0.5 mol/l (pKa=4.75)
- 2. Comment préparer 1 litre d'une solution tampon de pH = 4.9

Exercice N°4:

On prépare une solution tampon de pH = 4,5 à partir d'acide acétique CH₃COOH (pKa = 4,8) et d'acétate de potassium CH₃COOK.

- **1.** Calculer le rapport [CH₃COOH]/[CH₃COO-].
- **2.** Indiquer comment préparer 5 litres de cette solution tampon ayant une concentration totale de 0,3 M ([CH₃COOH] + [CH₃COO-] = 0,3 M) à partir d'acide acétique 2 M, d'une solution de potasse KOH à 2,5 M et d'eau.

Solutions

Exercice N°1:

1. Chlorure d'ammonium NH₄Cl est un sel formé par une base faible et un acide fort ⇒ il est considère un acide faible

$$\begin{cases} NH_4^+ + H_2O & \rightleftharpoons NH_3 + H_3O^+ \\ HCl + H_2O & \rightleftharpoons Cl^- + H_3O^+ \end{cases}$$

$$\Rightarrow$$
 NH₄⁺ + HCl \rightleftharpoons NH₄Cl (sel) \Rightarrow NH₄Cl (sel) \rightleftharpoons NH₄ $^+$ Cl

NH₄⁺: acide faible conjugué de NH₃

Cl⁻: base faible conjugué de HCl et un ion différent ou spectateur (il ne rentre pas dans la réaction).

$$pH_{NH4Cl} = pH_{NH4+} = pH_{acide faible} = \frac{1}{2} (pka-logc)$$

$$M_{NH4Cl} = 14 + 4 + 35,5 = 53,5 \text{ g/mol.} \Rightarrow n_{NH4Cl} = m/M, n_{NH4Cl} = 26,75/53,51$$

 $n_{NH4Cl} = 0,5 \text{ mol}$

$$C_{NH4Cl} = n/V \Rightarrow C_{NH4Cl} = 0.5/1 \Rightarrow C_{NH4Cl} = 0.5 \text{ mol/l}.$$

A.N:

$$pH_{NH4Cl} = \frac{1}{2}(9,25 - log0,5) \Rightarrow pH_{NH4Cl} = 4,78.$$

2. Calcul le nombre de mole de solution tampon, pH=9,07

$$pH = pka + \log \frac{[base\ conjugu\'ee]}{acide}$$
 Relation d'Enderson

$$pH = pka + \log \frac{[NH_3]}{[NH_4^+]}$$

$$n_1 = n_{NH3}$$
 et $n_2 = n_{NH4Cl}$, $pH = 4,78$

La relation précédente devient :

$$pH = pka + \log \frac{n_1}{n_2}$$

<u>A.N</u>:

$$\overline{n_1} = n_2 \ 10^{pH-pka} \Rightarrow n_1 = 0.5 \ 10^{9.07-9.25}$$

$$\Rightarrow$$
 n₁ = 0,326 mol

Exercice N°2:

H₂S : est un acide faible se dissociation se fait en deux étapes :

$$H_2S + H_2O \rightleftharpoons HS^- + H_3O^+ \dots (1)$$

$$HS^- + H_2O \rightleftharpoons S^{-2} + H_3O^+ \dots (2)$$

Les constants de 1 ère et 2 eme acidités sont respectivement Ka₁ et Ka₂ :

$$K_{a1} = \frac{[HS^-][H_3O^+]}{[H_2S]} = 10^{-7}$$

$$K_{a2} = \frac{[S^{-2}][H_3O^+]}{[HS^-]} = 1.2 \ 10^{-13}$$

- En examinant les valeurs de Ka_1 et Ka_2 o, remarque qu'elles sont faibles : H_2S est donc peu dissocié, on peut supposer que $[H_2S] = 0,1$ mol/l, le pH de la solution étant égal à 3,7 donc $[H_3O^+] = 10^{-pH} = 2 \cdot 10^{-4}$ mol/l de Ka_1
- On tire

$$[HS^{-}] = K_{a1} \frac{[H_2 S]}{[H_3 O^{+}]} = 10^{-7} \frac{10^{-1}}{2 \cdot 10^{-4}} = 5 \cdot 10^{-5}$$
$$[HS^{-}] = 5 \cdot 10^{-5} \, mol/l$$

- D'autre part, on suppose que H₃O⁺ provient seulement de la 1ére dissociation de H₂S, [S⁻²] est déterminée à partir de Ka₂.
- On tire ·

$$[S^{-2}] = K_{a2} \frac{[HS^{-}]}{[H_3O^{+}]} = 1.2 \cdot 10^{-13} \frac{5 \cdot 10^{-5}}{2 \cdot 10^{-4}} = 3 \cdot 10^{-13}$$

$$[S^{-2}] = 3 \ 10^{-13} \ mol/l$$

Les valeurs de [HS-] et [S-2] étant faibles, les approximations faibles sont donc justifiées.

Exercice N°3:

Préparation d'une solution tampon de pH=4,9.

Le pH d'une solution tampon est donné par la relation suivante :

$$pH = pka + \log \frac{[base\ conjugu\'ee]}{acide}$$

Pour le couple : (CH₃COOH/ CH₃COO⁻)

 $CH_3COOH + H_2O \rightleftharpoons CH_3COO^- + H_3O^+$

Le rapport des concentrations : $\frac{[CH_3COO^-]}{[CH_3COOH]}$ est obtenu à partir de la relation

$$4,9 = 4,75 + log \frac{[CH_3COO^-]}{[CH_3COOH]}$$

Soit :
$$V_1 = V_{CH3COOH}$$
 et $V_2 = V_{CH3COO}^-$, $V_T = V_1 + V_2 = 1l$
 $C'_1 = C_{CH3COOH}$ $C'_2 = C_{CH3COO}^-$ pH_{tampon} = 4.9.

Dans un mélange :
$$V_T = V_1 + V_2 = 1l$$
 et $C_1 = C'_1 V_1 / V_T$, $C_2 = C'_2 V_2 / V_T$

$$V_T = V_1 + V_2 = 1l = 1000 \text{ ml}$$

$$4.9 = 4.75 + \log(V_2/V_1)$$

Après les calculs on trouvé :

$$V_1 = 580 \text{ ml}$$
 et $V_2 = 420 \text{ ml}$

Exercice N°4:

1. Le pH d'une solution tampon est défini par l'expression :

$$pH = pka + log \frac{[base\ conjugu\'ee]}{[Acide]}$$

$$CH_3COOH + H_2O \rightleftharpoons CH_3COO^- + H_3O^+$$

Donc: 4,5 = 4,8 +
$$\log \frac{[CH_3COO^-]}{[CH_3COOH]} \Rightarrow \frac{[CH_3COOH]}{[CH_3COO^-]} \approx 2$$

2.
$$[CH_3COOH] + [CH_3COO^-] = 0,3$$

$$[CH_3COOH] = 0.2 \text{ M} \text{ et } [CH_3COO^-] = 0.1 \text{ M}$$

Dans les 5 litres de solution on a donc 0,5 mole de CH₃COOK et 1 mole de CH₃COOH.

L'acétate de potassium est préparé par réaction de l'acide acétique sur la potasse KOH selon :

$$CH_3COOH + KOH \rightarrow CH_3COOK + H_2O$$

⇒ Pour former 0,5 mole de CH₃COOK il faut ajouter 0,5 mole de KOH soit:

$$(1000 \times 0.5)/2.5 = 200 \text{ mL}$$
 de KOH 2.5 M à 0.5 mole de CH₃COOH.

Il reste encore 1 mole de CH₃COOH. Il est nécessaire d'avoir initialement 1 + 0.5 + 1.5 mole, soit en volume $(1000 \times 1.5)/2 = 750$ mL de CH₃COOH 2M.

Les 5 litres de solution tampon de pH=4,5 (0,3 M) sont donc préparés à partir du mélange suivant :

$$[KOH] = 200 \text{ mL}, \quad [CH_3COOH] = 750 \text{ mL}; \quad [H_2O] = 4050 \text{ mL}.$$

2.7. Equilibre oxydoréduction :

2.7.1. Réaction d'oxydoréduction : transfert d'électrons :

Une réaction d'oxydo-réduction est une réaction qui fait intervenir les électrons (**transfert d'électrons**) entre les espèces régissantes (molécules, ions et atomes). Cette réaction est décomposable en deux demi-réactions : réaction d'oxydation + réaction réduction).

2.7.2 Notion d'oxydation, de réduction et d'oxydo-réduction :

- a. Une oxydation: l'oxydation d'un composé correspond à une :
- 2- On appelle l'élément qui perd les électrons réducteur (Exemple : Red ----- Ox + ne⁻)
- 3- Augmentation de nombre d'oxydation (N.O).
- b. Une réduction : la réduction d'un composé correspond à une :
- 1- Gain des électrons (Exemple : Cu⁺² + 2e⁻ → Cu)
- 2- On appelle l'élément qui gain les électrons oxydant (Exemple : Ox + ne⁻ Red)
- 3- Diminution de nombre d'oxydation (N.O).

2.7.3. Nombre d'oxydation (ou degré d'oxydation) :

Le nombre d'oxydation est une charge arbitraire. Il consiste à attribuer à l'élément le plus électronégatif les électrons de la liaison ou de les partager si les atomes sont identiques (Le nombre d'oxydation s'écrite en : le signe (+ ou -) + chiffre romain.

- a. Le nombre d'oxydation de l'atome d'oxygène est toujours –II sauf dans le cas : H_2O_2 et F_2O .
- **b.** Le nombre d'oxydation de l'atome d'hydrogène est toujours +I sauf dans le cas : des hydrures (se sont des molécules constitués de l'atome d'hydrogène et un atome de groupe IA).
- c. Le nombre d'oxydation d'un élément (corps simple) isolé et neutre (non chargé) est nul. Exemple : Na, Fe, ...
- **d.** Le nombre d'oxydation d'un élément (corps simple) isolé et chargé est la charge portée par cet atome. Exemple : Cu⁺² (N.O=+III), Al⁺³(N.O=+III), ...
- e. Le nombre d'oxydation d'un élément se trouve dans une molécule non chargée : Exemple : $\underline{CO}_2 \Rightarrow x_c + 2x_o = 0 \Rightarrow x_c + 2 (-2) = 0 \Rightarrow x_c + + IV ((N.O(C) = + IV))$.

- **f.** Le nombre d'oxydation d'un élément se trouve dans une molécule chargée : Exemple : $\underline{Mn}O_4^- \Rightarrow x_{Mn} + 4x_o = -1 \Rightarrow x_{Mn} + 4$ (-2) = -1 $\Rightarrow x_{Mn} = +VII$ ((N.O(Mn)=+VII).
- g. Combinaisons neutre formée d'un seul élément (diatomée), le nombre d'oxydation est
 nul. Exemple : Cl₂, O₂, Br₂, N₂,

2.7.4. Ecriture des réactions d'oxydoréduction :

Les réactions d'oxydo-réduction s'effectuent simultanément c.à.d. les électrons qui sont perdus par le réducteurs sont captés par l'oxydant.

Une réaction d'oxydo-réduction à lieu par association de deux couples rédox :

Couple 1 (Ox1/Red1): Red1 \rightleftharpoons Ox1 + ne⁻ (Réaction d'oxydation)

Couple 2 (Ox2/Red2): Ox2 + $ne^- \rightleftharpoons Red2$ (Réaction de Réduction)

$$Red1 + Ox2 \rightleftharpoons Ox1 + Red2$$

2.7.5. Equilibrer une réaction oxydo-réduction :

Il existe plusieurs méthodes pour équilibrer les réactions oxydo-réduction, nous citons ici une parmi ces méthodes :

Pour équilibrer une réaction oxydo-réduction, il faut suivre les étapes suivantes (1-5) :

Soit l'exemple suivant : Equilibrer la réaction suivante en milieu acide :

$$Cr_2O_7^{-2} + Fe^{+2} \rightleftharpoons Cr^{+3} + Fe^{+3}$$

Etape 1 : Séparer entre les deux demi-réactions

$$\begin{array}{ccc} Cr_2O_7^{\text{--}2} & \rightarrow & Cr^{\text{+}3} \\ Fe^{\text{+}2} & \rightarrow & Fe^{\text{+}3} \end{array}$$

Etape 2: Calculer le nombre d'oxydation pour voir est ce que une augmentation ou une diminution de $N.O \Rightarrow$ type (oxydation ou réduction) \Rightarrow les électrons à gauche ou à droit.

(1)
$$\operatorname{Cr}_2\operatorname{O}_7^{-2} + \operatorname{Ze}^- \rightleftharpoons \operatorname{Cr}^{+3}$$
 (2) $\operatorname{Fe}^{+2} \rightleftharpoons \operatorname{Fe}^{+3} + \operatorname{1e}^-$

$$2x_{Cr} + 4(-2) = -2 \qquad \qquad x_{Cr} = +\operatorname{III} \qquad \qquad x_{Fe+} = +\operatorname{III} \qquad \qquad x_{Fe+} = +\operatorname{III}$$

$$x_{Cr} = +\operatorname{VI} \qquad x_{Cr} = +\operatorname{III}$$

Etape 3 : Intégrer le milieu :

Si on a le milieu acide : il faut ajouter le H₃O⁺ et H₂O

Si on a le milieu basique : il faut ajouter le OH- et H₂O

Question : A quel coté nous ajoutons les ions de : H₃O⁺ et OH⁻?

Réponse : Il faut ajouter les ions en H_3O^+ à coté les électrons et les ions en OH^- l'inverse de position des électrons.

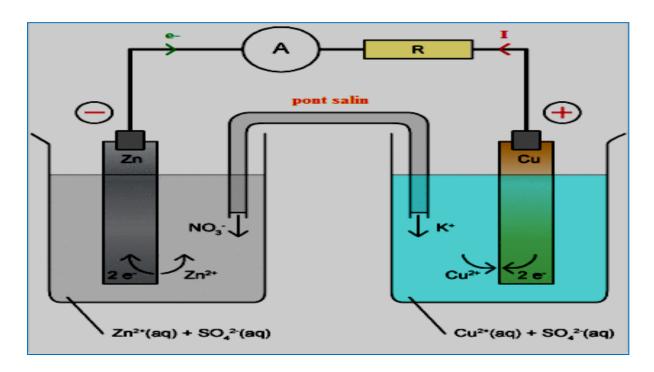
(1)
$$Cr_2O_7^{-2} + x H_3O^+ + Ze^- \rightleftharpoons 2Cr^{+3} + yH_2O$$
 (2) $Fe^{+2} \rightleftharpoons Fe^{+3} + 1e^{-3}$

Oxygène:
$$\begin{cases} 7+x=y \Rightarrow & y=x+2 \\ 3x=2y & 3x=2(x+2) \end{cases}$$

$$\Rightarrow \begin{cases} y = x + 2 \Rightarrow y = 21 \\ 3x = 4 + 2x \end{cases} \quad \begin{cases} y = 21 \\ x = 14 \end{cases}$$

Etape 4 : Vérification la conservation de la matière et la conservation de la charge.

(1)
$$Cr_2O_7^{-2} + 14 H_3O^+ + 6e^- \rightleftharpoons 2Cr^{+3} + 21H_2O$$
 (Z=-6)


(2)
$$Fe^{+2} \Rightarrow Fe^{+3} + 1e^{-} /* 6$$

Etape 5 : Vérification si la réaction totale est équilibrée ou non (voir les charges)

Réaction totale:
$$Cr_2O_7^{-2} + 6 Fe^{+2} + 14 H_3O^+ + 6e^- \rightleftharpoons 2Cr^{+3} + 21H_2O$$
 (Z=-6)

2.7.6. Application de l'oxydo-réduction (pile de Daniell) :

Une pile est un dispositif chimique susceptible de fournir de l'énergie électrique (circulation d'électrons) à un circuit extérieur. Elle est constituée de deux demi pile-piles contenant les deux membres d'un couple oxydant réducteur.

Deux solution reliées par un pont conducteur salin (à travers le quel il y a échange d'ions) entre les deux couples rédox (Zn^{+2}/Zn) et (Cu^{+2}/Cu) .

a. Notion d'électrode : l'électrode est la partie conductrice ou une réaction d'oxydation ou de réduction va apparaitre.

Il y a un passage du courant de Cu au Zn.

<u>L'Anode</u>: est l'électrode ou se produit l'oxydation; elle correspond au pole négative de la pile.

$$Zn \rightleftharpoons Zn^{+2} + 2e$$

On observe alors la dissolution progressive de la lame de Zn.

<u>La Cathode</u> : est l'électrode ou se produit la réduction ; elle correspond au pole positif de la pile.

$$Cu^{+2} + 2e \rightleftharpoons Cu$$

On observe un dépôt de Cu sur la lame de cuivre.

La réaction totale sera :

Couple 1 (
$$\mathbb{Z}n^{+2}/\mathbb{Z}n$$
): $\mathbb{Z}n \rightleftharpoons \mathbb{Z}n^{+2} + 2e$ - (Réaction d'oxydation)

Couple 2 (
$$Cu^{+2}/Cu$$
): $Cu^{+2} + 2e = Cu$ (Réaction de Réduction)

$$Zn + Cu^{+2} \rightleftharpoons Zn^{+2} + Cu$$

b. Ecriture générale d'une pile :

Par convention on écrit la pile de façon suivante :

$$Zn/Zn^{+2}$$
,mol.l⁻¹// k⁺,Cl⁻// Cu^{+2} ,mol-l⁻¹/ Cu

Anode (-) Pont salin Cathode (+)

Résumé:

<u>L'Anode</u>: pole négative (-): Oxydation: Perd des électrons

La Cathode : pole positif (+) : Réduction : gain des électrons

Pont salin: assuré la circulation des ions (équilibrer entre les deux électrodes).

2.7.7. Potentiel d'électrode :

C'est la différence de potentiel entre l'électrode et la solution dans la quelle elle plonge, on verra que la f.e.m de la pile est directement reliée aux valeurs des deux potentiels d'électrodes.

a. Électrode normale à hydrogène (ENH)

Couple:
$$H_3O^+/H_2$$
 (ou H^+/H_2 ou H_2O/H_2

$$2 H_3 O^+ + 2 e^- \rightleftharpoons H_2 + 2 H_2 O$$

$$E^{\circ}_{H+/H2} = 0$$
 à 25°C

b. Relation de NERSNST (1889): Potentiel d'électrode ou électrochimique

Cette relation s'applique à un couple rédox (ox/red)

$$E = E^0 + \frac{RT}{nF} \operatorname{Ln} \frac{[Ox]}{[Red]}$$

E: potentiel rédox du couple ox/red ou potentiel électrochimique

E°: potentiel standard d'électrode.

R: constante des gaz parfait (8.31 J/molK)

n: nombre d'électrons mis en jeu

F: Faraday (=96500 C)

T: Température (298 K)

Ln: logarithme népérien: 2.3 log

$$E = E^0 + \frac{0.059}{n} \operatorname{Log} \frac{[Ox]}{[Red]}$$

$$E = E^0 + \frac{0.006}{n} \operatorname{Log} \frac{[Ox]}{[Red]}$$

2.7.8. Relation entre le potentiel standard et la constante d'équilibre (K) :

Soit deux couples rédox : (Ox1/Red1) et (Ox2/Red2)

Red1
$$\rightleftharpoons$$
 Ox1 + ne⁻

$$\Rightarrow$$
 Ox1 + ne⁻ $E_1 = E_1^{\circ} + \frac{0.06}{n} log \frac{[Ox_1]}{[Red_1]}$

$$Ox2 + ne^- \rightleftharpoons Red2$$

Ox2 + ne⁻
$$\rightleftharpoons$$
 Red2 $E_2 = E_2^{\circ} + \frac{0.06}{n} log \frac{[Ox_2]}{[Red_2]}$

$$Red1 + Ox2 \rightleftharpoons Ox1 + Red2$$

$$K = \frac{[Ox_1][Red_2]}{[Red_1][Ox_2]}$$

Or à l'équilibre on a : $\Delta E = 0$ c.à.d : $E_1 = E_2$

$$E_1^{\circ} + \frac{0.06}{n} \log \frac{[Ox_1]}{[Red_1]} = E_2^{\circ} + \frac{0.06}{n} \log \frac{[Ox_2]}{[Red_2]}$$

$$E_1^{\circ} - E_2^{\circ} = \frac{0.06}{n} log \frac{[Ox_2]}{[Red_2]} - \frac{0.06}{n} log \frac{[Ox_1]}{[Red_1]}$$

$$E_1^{\circ}-E_2^{\circ} = \frac{0.06}{n} \log \frac{[Ox_1][Red_2]}{[Red_1][Ox_2]} = \frac{0.06}{n} \log K$$

$$\log K = \frac{n(E_1^{\circ} - E_2^{\circ})}{0.06}$$

Avec
$$E_1^{\circ} > E_2^{\circ}$$

<u>Remarque</u>: le couple qui a le potentiel le plus élevé subira la réduction l'autre couple (potentiel plus faible) subira l'oxydation.

2.7.9. Influence du ph sur le potentiel d'électrode (Relation entre le E et le pH) :

Soit la réaction suivante : $Ox + x H_3O^+ + ne- \rightleftharpoons Red + xH_2O$

$$E = E^{0} + \frac{0.06}{n} \log \frac{[Ox][H_{3}O^{+}]^{x}}{[Red]}$$

$$E = E^0 - \frac{0.06}{n} (-\log[H_3 O^+]^x) - \frac{0.06}{n} \log \frac{[Ox]}{[Red]}$$

$$E = E^{0} - \frac{0.06}{n} x pH + \frac{0.06}{n} \log \frac{[Ox]}{[Red]}$$

Exercices

Exercice N°1:

Calculer le les degrés (nombres) d'oxydation des atomes soulignés :

KMnO₄, HNO₃, H₃PO₄, Cr₂O₇⁻², NaH, O₂, F₂O, I⁻.

Exercice N°2:

Parmi les réactions ci-dessous la(les)quelle(s) qui représente (s) une ou des réaction(s) d'oxydo-réduction :

$$A/ Fe^{3+} + 3OH^{-} \rightleftharpoons Fe(OH)_{3}$$

$$B/ 2Al(OH)_3 \rightleftharpoons Al_2O_3 + 3H_2O$$

$$C/ZnSO_4 + 2NaOH \rightleftharpoons Zn(OH)_2 + Na_2SO_4$$

$$D/Zn + 2Ag^+ \rightleftharpoons Zn^+ + 2Ag$$

E/ Aucune réponse juste.

Exercice N°3:

1. Equilibrer les réactions suivantes en milieu acide :

$$I_2 + S_2 O_3^{-2} \Rightarrow I^- + S_2 O_4^{-2}$$

$$MnO_4^{-2} \rightleftharpoons MnO_2^{-2} + MnO_4^{-}$$

2. Equilibrer les réactions suivantes en milieu basique :

$$N_2H_4 + Cu(OH)_2 \rightleftharpoons N_2 + Cu$$

$$PbO_2 + Cl^- \rightleftharpoons ClO^- + Pb(OH)_3^-$$

Exercice N°4:

- **1.** Exprimer le potentiel d'électrode du système Riboflavine-Leucoriboflavine (Rb/RbH₂) en fonction du pH de la solution à 25 °C.
- 2. Calculer la constante d'équilibre K de l'équation du couple :

$$(Fe^{3+}/Fe^{2+}) \rightarrow E_1{}^0 = 0,771 \text{ V}$$

$$(Sn^{4+}/Sn^{2+}) \rightarrow E_2{}^0 = 0.14 \text{ V}$$

3. Quelle est la f.e.m. de la pile suivante :

$$\mbox{Ag/Ag}^{\scriptscriptstyle +}$$
 (10 $^{\scriptscriptstyle -1}$ M) // $\mbox{Cu}^{2\scriptscriptstyle +}$ (10 $^{\scriptscriptstyle -2}$ M)/Cu

On donne les potentiels standards des deux couples : $Ag^+/Ag:0,80\ V$ $Cu^{2+}/Cu:0,34\ V$

Solutions

Exercice N°1:

KMnO₄:
$$x_K + x_{Mn} + x_{O4} = 0 \Rightarrow 1 + x_{Mn} + 4(-2) = 0 \Rightarrow x_{Mn} = 8 - 1$$

$$x_{Mn} = 7 \implies x_{Mn} = +VII$$

HNO₃:
$$x_H + x_N + x_{O3} = 0 \Rightarrow 1 + x_N + 3(-2) = 0 \Rightarrow x_{Mn} = 6 - 1$$

$$x_N = 5 \Rightarrow x_N = +V$$

$$H_3\underline{PO_4}$$
: $x_{H3} + x_P + x_{O4} = 0 \Rightarrow 3(1) + x_P + 4(-2) = 0 \Rightarrow x_P = 8-3$

$$x_P = 5 \implies x_P = +V$$

Cr₂O₇⁻²:
$$2x_{Cr} + x_{O7} = -2 \Rightarrow 2x_{Cr} + 7(-2) = -2 \Rightarrow x_P = 14-2/2$$

$$x_{Cr} = 6 \implies x_{Cr} = +VI$$

NaH:
$$x_{Na} + x_H = 0 \Rightarrow 1 + x_H = 0 \Rightarrow x_H = -I$$
.

 $x_H = -1 \implies x_H = -I$ (cas particulier de l'hydrogène car on a les hydrures).

O₂:
$$2x_{O2} = 0 \implies x_O = 0$$
.

$$F_2O: x_{F2} + x_O = 0 \implies 2(-1) + x_O = 0 \implies x_O = +2$$

 $x_0 = +2 \implies x_0 = +II$ (cas particulier de l'oxygène car on a le F_2O)

$$\mathbf{I}^-: x_I = -1 \Rightarrow x_I = -I.$$

Exercice N°2:

Pour répondre à cette question il faut calculer le nombre d'oxydation pour chaque atome de ces réactions ⇒ s'il y a une augmentation ou diminution de nombre d'oxydation c.à.d. on a une réaction d'oxydo-réduction.

La réponse est : le (D)

Car:
$$D/Zn + 2Ag^+ \rightleftharpoons Zn^+ + 2Ag$$

Nombre d'oxydation de Zn égale à 0; Nombre d'oxydation de Zn⁺ égale à 1; Nombre d'oxydation de $2Ag^+$ égale à 2; Nombre d'oxydation de 2Ag égale à 0; ceci signifié qu'il y a une augmentation de nombre d'oxydation 0 à 1 (Zn à Zn⁺) et une diminution de nombre d'oxydation de 2 à 0 ($2Ag^+$ à 2Ag)

Par contre on voit qu'il n a aucun de variation (une augmentation ou diminution) de nombre d'oxydation dans les autres cas.

Exercice N°3:

1. Equilibrer les réactions suivantes en milieu acide :

$$I_2 + S_2 O_3^{-2} \qquad \rightleftharpoons \qquad I^- + S_2 O_4^{-2}$$

(1)
$$I_2 \rightleftharpoons I^-$$
 et $S_2O_3^{-2} \rightleftharpoons S_2O_4^{-2}$

$$1/I_2 + Ze^- \rightleftharpoons 2I^-$$

$$x_{I} = 0$$
 Dim $x_{N} = -I$ Reduction

$$I_2 + 2e^- \rightleftharpoons 2I^- \dots (1)$$

(2)
$$S_2O_3^{-2} + x H_2O \Rightarrow S_2O_4^{-2} + y H_3O^+ + Ze^-$$

$$2x_S+3(-2)=-2$$
 $x_S=+II$
Aug
Oxydation
 $x_S=+III$

Oxygène:
$$\begin{cases} 3+x=4+y &(1) \\ 2x=3y &(2) \end{cases} \Rightarrow \begin{cases} x=3 \\ y=2 \end{cases}$$

$$S_2O_3^{-2} + 3H_2O \implies S_2O_4^{-2} + 2H_3O^+ + 2e^-$$
(2)

Réaction totale : (1)+(2)

$$I_2 + 2e^- \rightleftharpoons 2I^-$$

$$S_2O_3^{-2} + 3H_2O \rightleftharpoons S_2O_4^{-2} + 2H_3O^+ + 2e^-$$

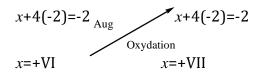
$$I_2 + S_2O_3^{-2} + 3H_2O + 2e^- \Rightarrow 2I^- + S_2O_4^{-2} + 2H_3O^+ + 2e^-$$

Réaction totale :

$$I_2 + S_2O_3^{-2} + 3H_2O \rightleftharpoons 2I^- + S_2O_4^{-2} + 2H_3O^+$$

$$MnO_4^{-2} \quad \rightleftharpoons \quad MnO_2^{-2} \quad + \quad MnO_4^{-}$$

(1)
$$MnO_4^{-2} + x H_3O^+ + Ze^- \rightleftharpoons MnO_2^{-2} + yH_2O$$


$$x+4(-2)=-2$$
 Dim $x+2(-2)=-2$ $x=+VI$ Reduction $x=+II$

Oxygène:
$$\begin{cases} 4+x=2+y \Rightarrow \begin{cases} y=x+2 \\ 3x=2y \end{cases}$$
Hydrogène:
$$\begin{cases} 3x=2y \end{cases}$$

$$\Rightarrow \begin{cases} y = x + 2 \Rightarrow \\ 3x = 4 + 2x \end{cases} \begin{cases} y = 6 \\ x = 4 \end{cases}$$

$$MnO_4^{-2} + 4 H_3O^+ + 4e^- \rightleftharpoons MnO_2^{-2} + 6H_2O....(1)$$

(2) $MnO_4^{-2} + yH_2O \implies MnO_4^{-1} \times H_3O^{+} + Ze^{-1}$

Oxygène:
$$\begin{cases} 4+2y=4+x \Rightarrow & x=2y \\ 3y=2x & 3y=2x \end{cases}$$

$$\Rightarrow \begin{cases} y=0 \\ x=0 \end{cases}$$

$$MnO_{4^{-2}} \rightleftharpoons MnO_{4^{-}} + 1e^{-})/*4....(2)$$

Réaction totale : (1)+(2)

$$MnO_4^{-2} + 4 H_3O^+ + 4e^- \rightleftharpoons MnO_2^{-2} + 6H_2O$$

$$MnO_4^{-2} \rightleftharpoons MnO_4^{-} + 1e^{-})/*4$$

$$MnO_4^{-2} + 4 H_{3}O^{+} + 4e^{-} + 4 MnO_4^{-2} \implies MnO_2^{-2} + 6 H_2O + 4 MnO_4^{-} + 4e^{-}$$

Réaction totale: $5MnO_4^{-2} + 4H_3O^+ \rightleftharpoons MnO_2^{-2} + 4MnO_4^- + 6H_2O$

2. Equilibrer la réaction suivante en milieu basique :

$$N_2H_4 + Cu(OH)_2 \rightleftharpoons N_2 + Cu$$

 $N_2H_4 \rightleftharpoons N_2$ et

 $Cu(OH)_2 \rightleftharpoons Cu$

(1) $N_2H_4 + x OH^- \Rightarrow N_2 + y H_2O + Ze^-$

$$2x_N + 4(x_N = 0$$
 Aug Oxydation

Oxygène:
$$\begin{cases} x = y & \dots & (1) \\ 4 + x = 2y & \dots & (2) \end{cases}$$
 $\Rightarrow x = 4$
Hydrogène: $\begin{cases} 4 + x = 2y & \dots & (2) \end{cases}$

$$N_2H_4 + 4OH^- \Rightarrow N_2 + 4H_2O + 4e^-$$
(1) (Z=4e⁻)

(2)
$$Cu(OH)_2 + y H_2O + Ze^- \rightleftharpoons Cu + x OH^-$$

$$x_{Cu}+2(-2)+2(+1)=0$$
 Dim $x_{Cu}=0$
 $x_{Cu}=+II$

Oxygène:
$$\begin{cases} 2+x=y & (1) \\ 2+2x=y & (2) \end{cases} \Rightarrow \begin{cases} x=0 \\ y=2 \end{cases}$$

$$Cu(OH)_2 + 2e^- \rightleftharpoons Cu + 2OH^-$$
(2) (Z=2e⁻)

Réaction totale : (1)+(2)

$$N_2H_4 + 4OH^- \Rightarrow N_2 + 4H_2O + 4e^-$$

$$Cu(OH)_2 + 2e^- \rightleftharpoons Cu + 2OH^- /*2$$

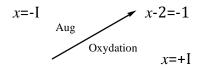
$$N_2H_4 + 2 Cu(OH)_2 + 4ON^2 + 4e^2 \Rightarrow N_2 + 2Cu + 4 H_2O + 4ON^2 + 4e^2$$

Réaction totale :

$$N_2H_4 + 2 Cu(OH)_2 \rightleftharpoons N_2 + 2Cu + 4 H_2O$$

$$PbO_2 + Cl^- \rightleftharpoons ClO^- + Pb(OH)_3^-$$

(1)
$$PbO_2 + xH_2O + Ze- \rightleftharpoons Pb(OH)_3^- + yOH^-$$


$$x+2(-2)=0$$
 Dim $x+3((-2)+1)=-1$ $x=+IV$ Reduction $x=+II$

Oxygène:
$$\begin{cases} 2+x=3+y \Rightarrow \begin{cases} x=y+1 \\ 2(y+1)=3+y \end{cases}$$
Hydrogène:
$$\begin{cases} 2+x=3+y \Rightarrow \begin{cases} x=y+1 \\ 2(y+1)=3+y \end{cases}$$

$$\Rightarrow \begin{cases} x=y+1 \Rightarrow \begin{cases} x=y+1 \Rightarrow \begin{cases} x=2 \\ 2y+2=3+y \end{cases} \end{cases} \Rightarrow \begin{cases} x=1 \end{cases}$$

$$PbO_2 + 2H_2O + 2e \rightarrow Pb(OH)_{3} + OH \dots (1)$$

(2)
$$Cl^{-} + xOH^{-} \rightleftharpoons ClO^{-} + yH_{2}O + Ze^{-}$$

Oxygène:
$$\begin{cases} x=1+y \Rightarrow \\ x=2y \end{cases} \begin{cases} 2y=y+1 \\ x=2y \end{cases}$$

$$\begin{cases} y=1 \\ x=2 \end{cases}$$

$$Cl^{-} + 20H^{-} \rightleftharpoons Cl0^{-} + H_{2}O + 2e^{-}...(2)$$

(1)+(2):
$$PbO_2 + 2H_2O + 2e^- + Cl^- + 2OH^- \Rightarrow Pb(OH)_3^- + OH^- + ClO^- + H_2O + 2e^-$$

Réaction totale :
$$PbO_2 + Cl^- + H_2O + OH^- \rightleftharpoons Pb(OH)_3^- + ClO^-$$

Exercice N°4:

1. Exprimer le potentiel d'électrode du système Riboflavine-Leucoriboflavine (Rb/RbH₂) en fonction du pH de la solution à 25 °C.

Rb + 2H₃O⁺ + 2e-
$$\rightleftharpoons$$
 RbH₂ + 2H₂O

$$E = E^{\circ} + \frac{0,06}{2} \log \frac{[Rb][H_3O^{+}]^2}{[RbH_2]}$$

$$E = E^{\circ} - 0,06pH + 0,03 \log \frac{[Rb]}{[RbH_2]}$$

 $pH = -log [H_3O^+]$

2. Calculer la constante d'équilibre K :

Couple 1:
$$(Fe^{3+}/Fe^{2+})$$
: $Fe^{3+} + 1e^{-} \rightleftharpoons Fe^{2+}$ (*2) $E_1^0 = 0,771 \text{ V}$

Couple 2:
$$(Sn^{4+}/Sn^{2+})$$
: $Sn^{2+} \rightleftharpoons Sn^{4+} + 2e$ - $E_2^0 = 0,14 \text{ V}$

Réaction totale:
$$2 \text{ Fe}^{3+} + \text{Sn}^{2+} \rightleftharpoons 2 \text{Fe}^{2+} + \text{Sn}^{4+}$$

Remarque: le couple oxydant est celui possédant le potentiel le plus élevé.

 $E_1^0 > E_2^0 \Rightarrow$ Le couple 1 subit une réduction et le couple 2 subit une oxydation

$$E_1 = E_1^0 + 2\frac{0.06}{2} \log \frac{[Fe^{+2}]}{[Fe^{+3}]}$$

$$E_2 = E_2^0 + \frac{0.06}{2} \log \frac{[Sn^{+4}]}{[Sn^{+2}]}$$

A l'équilibre $\Delta E=0 \implies E_1 = E_2$

$$\log \frac{[Sn^{+4}][Fe^{+2}]^2}{[Sn^{+2}][Fe^{+3}]^2} = \frac{2(E_1^0 - E_2^0)}{0.06}$$

$$\log K = \frac{2(0,771 - 0,14)}{0,06} = 21,03$$

$$K = 1,07 \ 10^{21}$$

Exercice N°5:

On considère des deux couples rédox :

$$Ag^+ + 1e - \rightleftharpoons Ag$$

Avec :
$$E_1^{\circ} = 0.80 \text{ V}$$

$$E_1 = 0.80 + \frac{0.06}{1} \log \frac{[Ag^+]}{[Ag]}$$
$$E_1 = 0.74$$

$$Cu^{+2} + 2e - \rightleftharpoons Cu$$

Avec: $E_2^{\circ} = 0.34 \text{ V}$

$$E_2 = 0.34 + \frac{0.06}{2} \log \frac{[Cu^{+2}]}{[Cu]}$$

 $E_1 = 0.28 \text{ V}$

La f.e.m de la pile est : $\Delta E = E_1-E_2 = 0,46 \text{ V}$

On peut dire que:

Le pole + est du coté de l'argent (le potentiel le plus élevé), la chaine électrochimique de cette pile s'écrira alors :

Cu/Cu²⁺ (10⁻² M) // Ag⁺(10⁻¹ M)/Ag

2.8. Equilibre de précipitation : Solubilité et produit de solubilité :

2.8.1. Définition:

a. Solubilité: La solubilité est la quantité maximale de solide qui peut être dissoute dans un litre de solution. On note S, elle s'exprime en g/l (solubilité massique) ou en mol/l (Solubilité molaire).

Les sels sont des électrolytes forts à faible solubilité. Ils peuvent être de type AC ou A_nC_m

$$AC_{(solide)} \rightleftharpoons AC_{(en solution)} \rightarrow A^{+}_{aq} + C^{-}_{aq}$$

On admet que dès qu'AC solide est mis en solution on a : $AC_{(solide)} \rightleftharpoons A^{+}_{aq} + C^{-}_{aq}$

b. Produit de solubilité :

Soit la réaction suivante :

$$AC_{(solide)} \rightleftharpoons A^{+}_{aq} + C^{-}_{aq}$$

D'après la loi d'action de masse on obtient : $Kc = Ks = [A^+]$ [C]

Dans le cas général on a : $A_nC_{m(solide)} \rightleftharpoons nA^{+\alpha}_{aq} + mC^{\beta}_{aq}$

$$Ks = [A^{+\alpha}]^n [C^{\beta-}]^m$$

2.8.2 Relation entre produit de solubilité et solubilité :

Sachant que la solubilité dépend de la température et la nature du solide. Il existe une relation entre la solubilité (S) et la constante de solubilité (Ks) (ou produit de solubilité).

$$A_nC_{m(solide)} \rightleftharpoons nA^{+\alpha}_{aq} + mC^{\beta-}_{aq}$$

A
$$t=0$$
 n_0

A
$$t=eq$$
 n_0 -S mS

$$Ks = \ [A^{+\alpha}]^n \ \ [C^{\beta\text{--}}]^m = \ [nS]^n * [mS]^m$$

Exemple 1 : AgCl_(s)

$$AgCl_{(s)} \rightleftharpoons Ag^+ + Cl^-$$

A
$$t=0$$
 n_0

A
$$t=eq$$
 n_0 -S S

$$Ks = [Ag^+] [Cl^-] = S*S \Rightarrow Ks = S^2$$

Exemple 2: Ca(PO₄)_{2(s)}

$$Ca(PO_4)_{2(s)} \rightleftharpoons 3Ca^{2+} + 2(PO_4)^{3-}$$

A
$$t=0$$
 n_0

A
$$t=eq$$
 n_0 -S 3S 2S

$$Ks = [Ca^{2+}]^3 [(PO_4)^{3-}]^2 = (3S)^3*(2S)^2 \implies Ks = 108 S^5$$

2.8.3. Effet de l'addition d'un ion sur la solubilité :

La solubilité d'un sel est liée également à la présence initiale des ions dans la solution. Si on modifie la concentration d'un des ions, selon le principe de LeChatelier, l'équilibre sera déplacé.

La solubilité d'un sel ionique est diminuée lorsqu'un ion commun (anion ou cation) est présent dans la solution (pour que Ks garde sa valeur constante).

Dans un cas général:

Soit un sel AC de solubilité dans l'eau pure. Soit S' la nouvelle solubilité de AC en présence d'un deuxième de BC de concentration C₀, l'ion commun est C⁺

$$AC_{(solide)} \rightleftharpoons A^{+}_{aq} + C^{-}_{aq}$$
 $A t=0 \quad n_{0}$
 $A t=eq1 \quad n_{0}-S \quad S \quad S$
 $A t=eq2 \quad n_{0}-S' \quad S' \quad S'+C_{0}$
 $Ks = [A^{+}] [C^{-}] = S' (S'+C_{0})$

Exemple : Par exemple AgCl en présence de KCl).

$$Ks = [Ag^+] [Cl^-] = S*S \Rightarrow Ks = S^2$$

À cette solution on ajoute des ions Cl^- se forme KCl (avec une concentration C_0) au sel $AgCl_{(s)}$, d'après le principe de LeChatelier, l'équilibre sera déplacé vers le sens inverse $(-1) \Rightarrow$ la formation de $AgCl_{(s)} \Rightarrow$ la solubilité de $AgCl_{(s)}$ en présence de KCl va diminuer (S').

Soit la réaction suivante :
$$AgCl_{(s)} \rightleftharpoons Ag^+ + Cl^-$$

$$A t=0 \quad n_0 \qquad -$$

$$A t=eq1 \quad n_0\text{-S} \qquad S \qquad S$$

$$A t=eq2 \quad n_0\text{-S'} \qquad S' \qquad S'+C_0$$

$$Ks = [Ag^+]_N [Cl^-]_N = S' (S' + C_0)$$

Pour trouver on a deux cas:

1-Si la différence entre S et C_0 (S - C_0) appartient à l'intervalle : $[10^{1-}$ - $10^{3-}]$

⇒ II faut résoudre une équation : $\mathbf{Ks} = S'(S' + C_0) \Rightarrow K_S = S'^2 + S'C_0$

 $\Delta = b_2-4ac$ (cas : $\Delta < 0$, $\Delta = 0$, $\Delta > 0$).

- **2-** Si la différence entre S et C_0 (S C_0) appartient à l'intervalle : $[10^{4-} 10^{7-}]$
- \Rightarrow Il faut simplifier l'équation : $\mathbf{K}\mathbf{s} = S'(S' + C_0) \Rightarrow \mathbf{K}\mathbf{s} = S'C_0$

2.8.4. Influence de pH sur la solubilité :

Ce sont les composés dont l'un des ions possède un caractère acide ou basique, c'est-à-dire libérant l'un des ions suivants

Anion: hydroxyde OH⁻; éthanoate CH₃COO⁻; Nitrite NO₂⁻; carbonates CO₃²⁻; hydrogénocarbonate HCO₃⁻.

Cations: NH₄⁺; éthylamonium C₂H₅NH₃.

Il faut ajouter l'(les équilibre(s) acido-basique(s) de constant ka. La solubilité augmente si le pH diminue dans ce cas.

Exemple: la solubilité de Zn(OH)2; ou NH4Cl; ou Pb(CH3COO)2 va dépendre du pH.

2.8.5. Effet de la température et de l'agitation :

Quant la température augmente la solubilité augmente, en plus l'agitation accélère la dissolution de sel.

2.8.6. Condition de précipitation :

Soit la réaction de la dissolution suivante : $A_n C_{m(solide)} \rightleftharpoons n A^{+\alpha}_{aq} + m C^{\beta-}_{aq}$

Soit la réaction de la précipitation suivante : $nA^{+\alpha}_{aq} + mC^{\beta}_{aq} \rightleftharpoons A_nC_{m(solide)}$

On définit le produit ionique comme suit : $Pi = [A^{+\alpha}]^n [C^{\beta-}]^m$

Cas 1 : Si on a : Ks > Pi = $[A^{+\alpha}]^n$ $[C^{\beta}]^m$ \Rightarrow la solution n'est pas saturée (insaturée).

<u>Cas 2</u>: Si on a : Ks = Pi = $[A^{+\alpha}]^n$ $[C^{\beta-}]^m$ \Rightarrow la solution est saturée.

<u>Cas</u> 3: Si on a : Ks < Pi = $[A^{+\alpha}]^n$ $[C^{\beta-}]^m$ \Rightarrow la solution est sursaturée (précipitation).

Exercices

Exercice N°1:

L'hydroxyde de magnésium $Mg(OH)_2$ est un composé peu soluble, de masse molaire 58.3 g/mol et qui a un produit de solubilité $Ks = 1,2 \cdot 10^{-11} \cdot mol^3/mol^3$ à 18 °C.

- 1. Calculer la solubilité de Mg(OH)₂ en gramme par litre.
- **2.** Calculer le produit de solubilité de $Ca_3(PO_4)_2$, $S = 2,50 \cdot 10^{-3}$ g/l; M = 310 g/mol.

Exercice N°2:

Les calculs urinaires sont constitués d'oxalate de calcium, CaC₂O₄. L'oxalate de calcium est un solide ionique peu soluble dans l'eau.

- 1. Calculer la solubilité molaire et la solubilité massique de CaC₂O₄.
- 2. Quel volume minimal d'eau pure faut-il utiliser pour dissoudre un calcul urinaire de 1.1 g?
- **3.** L'eau utilisée contient en réalité du chlorure de calcium à la concentration de 10⁻⁴ mol/l. Quel est dans ce cas le volume minimal d'eau nécessaire pour dissoudre le même calcul urinaire de 1.1 g ?

 $\underline{On\ donne}$: le produit de solubilité de l'oxalate de calcium : $Ks = 10^{-8.6}$.

Exercice N°3:

- A T=25 C° et dans l'eau pure le chromate d'argent (Ag₂CrO₄) est un sel peu soluble
- 1. Ecrire la réaction de dissociation de ce sel dans l'eau à cette température.
- 2. Trouvez la solubilité molaire et massique de Ag₂CrO₄.
- 3. Déduire le volume minimal d'eau qui peut dissoudre 2.65 g de Ag₂CrO₄.
- En réalité l'eau dans la quelle on a dissout le chromate d'argent n'est pas pure mais, contient le nitrate d'argent AgNO₃ (sel très soluble dans l'eau) à 10⁻¹ M.
- 1. Montrer qualitativement comment varie la solubilité d'Ag₂CrO₄ dans la solution d'AgNO₃.
- 2. Trouvez la quantité maximale d'Ag₂CrO₄ qui peut se dissoudre dans 50ml de cette solution.
- **3.** Que pouvez-vous conclure.

<u>On donne</u>: **Ks** $(Ag_2CrO_4) = 1.6*10^{-12}$, **M** $(Ag_2CrO_4) = 331.8$ g/mol

Exercice N°4:

Le produit de solubilité du sulfate de plomb PbSO₄ est de 10^{-8.6}. Calculer sa solubilité molaire et massique dans :

- 1. L'eau pure.
- **2.** Une solution de nitrate de plomb Pb(NO₃)₂ 0,10 mol/l. calculer la nouvelle solubilité S', que peut-on conclure ?

Solutions

Exercice N°1:

1. Calculer la solubilité de Mg(OH)2 en gramme par litre.

$$Mg(OH)_2 \rightleftharpoons Mg^{2+} + 2OH^{-}$$

A
$$t=0$$
 n_0 0

A
$$t=eq$$
 n_0 -S S

$$K_S = [Mg^{2+}] [OH^{-}]^2 = S(2S)^2 = 4S^3 \implies S^3 = K_S/4$$

<u>A.N:</u>

$$S = \sqrt[3]{(Ks/4)} = \sqrt[3]{(1,22 \ 10^{-11}/4)} \implies S = 1,44 \ 10^{-4} \ mol/l$$

Sachant que :
$$M_{Mg(OH)2} = 58,3 \text{ g/mol}$$

$$S_m = S M = 1,44 10^{-4} 58,3$$

$$\Rightarrow \ S_m = 8{,}39\ 10^{\text{--}3}\ \text{g/l} \ \Rightarrow \ S_m = 8{,}39\ m\text{g/l}$$

2. Calculer le produit de solubilité de $Ca_3(PO_4)_2$, $S=2,50.10^{-3}$ g/l; M=310 g/mol.

$$Ca_3(PO_4)_2 \rightleftharpoons 3 Ca^{2+} + 2 PO_4^{-3}$$

A
$$t=0$$
 n_0 0 0

A
$$t=eq$$
 n_0 -S 3S 2S

$$Ks = [Ca^{2+}]^3 [PO_4^{-3}]^2 = (3S)^3 (2S)^2 = 108 S^5$$

Sachant que:
$$M_{Ca3(PO4)2}=310$$
 g/mol

$$S_m = S M \implies S = S_m/M = 2,50 \ 10^{-3}/310 \Rightarrow S = 8,06 \ 10^{-6} \ mol/l$$

A.N:

$$Ks = 108 S^5 = 108 (8,06 10^{-6})^5 \Rightarrow Ks = 3,54 10^{-24} \text{ mol}^5/l^5 \text{ ou } Ks = 3,54 10^{-24}$$

Exercice N°2:

1. Calculer la solubilité molaire et la solubilité massique de CaC₂O₄:

$$CaC_2O_4 \rightleftharpoons Ca^{2+} + C_2O_4^{-2}$$

A
$$t=0$$
 n_0 0 0

$$A t=eq n_0-S S S$$

$$Ks = [Ca^{2+}][C_2O_4^{-2}] = S \cdot S = S^2$$

A.N:

$$\Rightarrow$$
 S = $\sqrt{K_S}$ = $\sqrt{10^{-8.6}}$

$$\Rightarrow$$
 Ks = 5,01 \cdot 10⁻⁵ mol/l

$$M(CaC_2O_4)\!\!=\ 40+2(12)+4(16)\ =\!128\ g/mol$$

$$S_m = S \cdot M$$
 $\Rightarrow S = 5,01 \cdot 10^{-5} \cdot 128 = 6,41 \cdot 10^{-3}.$
 $\Rightarrow S = 6,41 \cdot 10^{-3} \cdot g/I$

• On peut dissoudre 6,41 10⁻³ g (c.à.d. 6,41 mg de CaC₂O₄ par 1*l* d'eau.

Alors pour dissoudre 1,1 g il:

$$6,41 \ 10^{-3} \ \mathrm{g} \rightarrow 1l \ \mathrm{d'eau}$$

$$1,1 g \rightarrow x=??$$

<u>A.N:</u>

1.1 g:

$$x = \frac{1.1 \cdot 1}{6.41 \cdot 10^{-3}} = 171.6$$

$$V = 171,6 L$$

3. Quel est dans ce cas le volume minimal d'eau nécessaire pour dissoudre le même calcul urinaire de 1.1 g après l'addition de chlorure de calcium à la concentration de 10^{-4} mol/l.

La présence des ions Ca²⁺ déplace l'équilibre vers la gauche c.à.d. la solubilité de l'oxalate va diminuer en présence de CaCl₂ (S'<S)

$$Ks = \ [Ca^{2+}]_N \ [C_2O_4^{-2}]_N = \ (S'+10^{-4}) \ . \ S' \ \ \Rightarrow \ \ S^2' + 10^{-4} \ S' - Ks = 0.$$

$$\Delta = b^2 - 4ac = 2. \ 10^{-8} > 0.$$

$$S' = \frac{-b - \sqrt{\Delta}}{2} < 0 \implies \text{à rejeter}$$

$$S' = \frac{-b + \sqrt{\Delta}}{2} > 0 \implies \grave{a} \ Accepter$$

<u>**A.N:**</u>

$$S' = \frac{-10^{-4} + \sqrt{2} \cdot 10^{-8}}{2} = 2,08 \cdot 10^{-5}$$

$$\Rightarrow S' = 2.08 \cdot 10^{-5} \, mol/l$$

$$S'_{m} = S' \cdot M$$
 $\Rightarrow S'_{m} = 2,08 \cdot 10^{-5} \cdot 128 = 2,64 \text{ mg/l}.$

$$\Rightarrow$$
 $S'_m = 2,64 mg/l$

• On peut dissoudre 2,64 10^{-3} g (c.à.d. 2,64 mg de CaC₂O₄ par 1*l* d'eau.

Alors pour dissoudre 1,1 g il:

2,64
$$10^{-3}$$
 g $\rightarrow 1l$ d'eau 1,1 g $\rightarrow x=??$

A.N:

$$x = \frac{1.1 \cdot 1}{2.64 \cdot 10^{-3}} = 416.6$$

$$V = 416,6 L$$

Exercice N°3:

1. Ecrire la réaction de dissociation de Ag2CrO4:

$$Ag_2CrO_4 \rightleftharpoons 2Ag^+ + CrO_4^{2-}$$

2. La solubilité molaire et massique de Ag₂CrO₄:

$$Ks = [Ag +]^{2*}[CrO_4^{2-}] = (2S)^{2*}S = 4S^3$$

 $S = (Ks/4)^{1/3}$, sachant que le $Ks=1.6*10^{-12}$

A.N:
$$S = (1.6 * 10^{-12}/4)^{1/3} \Rightarrow S = 7.35 * 10^{-5} mol/l.$$

Sm = S * M, sachant que M $(Ag_2CrO_4) = 331.8$ g/mol.

A.N: Sm =
$$7.35 * 10^{-5} * 331.8 \Rightarrow$$
 Sm = $2.44 * 10^{-2} g/l$.

3. <u>Déduire le volume minimal d'eau qui peut dissoudre</u> 2.65 g de Ag₂CrO₄ :

$$x = (2.65*1)/2.44*10^{-2} \implies x = 108.60 \implies \mathbf{V_{min}} = \mathbf{108.60} \ l.$$

- En réalité l'eau dans la quelle on a dissout le chromate d'argent n'est pas pure mais, contient le nitrate d'argent $AgNO_3$ (sel très soluble dans l'eau) à 10^{-1} M.
- **1.** <u>Montrer qualitativement comment varie la solubilité de Ag_2CrO_4 dans la solution de $AgNO_3 \Rightarrow Effet d'ion commun :$ la solution de nitrate d'argent apporte des ions argent (0,1) (10^{-1}) mol/l); Ks ne dépend que de la température et à température constante $[CrO_4^{2-}]$ va donc diminuer.</u>

à t=eq1

 n_0 -S

2S

à t=eq2 n_0 -S'

2S'+10⁻¹

S s,

 $K_{S}=[A_{g}+]_{N}^{2}*[C_{f}O_{4}^{2}]_{N}=(2S'+10^{-1})^{2}*S'$

On a: $S(Ag_2CrO_4) = 7.35 * 10^{-5} mol/l$.

 $C(AgNO_3) = 10^{-1} mol/l$

 $S(Ag_2CrO_4)$ - $C(AgNO_3)\approx 10^{-4}$ \Rightarrow On peut négliger le 2S' devant le 10^{-1} .

 \Rightarrow Ks=[Ag+]_N^{2*}[CrO₄²⁻]_N= (10⁻¹)^{2*}S' \Rightarrow S' = Ks/ (10⁻¹)²

A.N:

 $S' = 1.6 * 10^{-12} / (10^{-1})^2 = 1.6 \cdot 10^{-10}$

 $S' = 1.6 *10^{-10} mol/l$ \Rightarrow

Sm = S * M, sachant que M $(Ag_2CrO_4) = 331.8 g/mol$.

 $Sm = 1.6 *10^{-10} * 331.8$ A.N:

 $Sm = 5.3 *10^{-8} g/l$.

2. Trouvez la quantité maximale de Ag₂CrO₄ qui peut se dissoudre dans un litre de cette solution:

$$S' = n/v \Rightarrow n = S' *V$$

A.N:

 $n = 1.6 * 10^{-10} * 50 * 10^{-3} = 0.8 * 10^{-11}$ \Rightarrow $n = 0.8 * 10^{-11}$ mol

3. *Que pouvez-vous conclure :*

On remarque que : l'effet d'ion commun diminué la solubilité et que S'< S

Exercice N°4:

1. Calculer sa solubilité molaire et massique dans l'eau pure :

PbSO₄

 Pb^{+2} \rightleftharpoons

 SO_4^{2-}

à t=0

 n_0

0

0

à t=eq

 n_0 -S

S

S

 $K_{S}=[Pb^{+2}][SO_4^{2-}]=SS=S^2 \Rightarrow S=\sqrt{K_S}$

A.N:

 $S = \sqrt{Ks} = \sqrt{10^{-8.6}} = 1.34 \cdot 10^{-4}$

 \Rightarrow S= 1.34 10⁻⁴ mol/l.

 $M_{(PbSO4)} = M(Pb) + M(S) + 4 M(O) = 207.2 + 32.1 + 4(16) = 303.3 \text{ g/mol}$

 $Sm(PbSO4) = S(PbSO4) * M(PbSO4) = 1,34 \cdot 10^{-4} \cdot 303,3 = 4,06 \cdot 10^{-2}$

 $Sm(PbSO4) = 4,06 \cdot 10^{-2} g/1$

2. Calculer la nouvelle solubilité S' dans la solution de nitrate de plomb Pb(NO₃)₂ 0,10 mol/l, et que peut-on conclure?

 $Pb(NO_3)_2$

 Pb^{+2} +

2NO₃ (sel totalement dissocié)

PbSO₄

 \rightleftharpoons Pb⁺² +

 SO_4^{2-}

$$Ks=[Pb^{+2}]_N[SO_4^{2-}]_N=(S'+10^{-1})S'$$

On a:
$$S_{PbSO4}=1,34\ 10^{-4}\ mol/l.$$
 La différence est $\approx 10^{-3}$ \Rightarrow on peut négliger S' devant S. $C_{Pb(NO3)2}=10^{-1}\ mol/l.$

En obtient: Ks=[Pb^{+2}]_N [SO_4^{2-}]_N = 10^{-1} S' \Rightarrow S' = Ks/ 10^{-1} (on utilise le même Ks car il dépend de la température).

A.N:

$$S' = 10^{-8.6}/10^{-1} = 1.8 \cdot 10^{-7} \text{ mol/l}$$

$$M_{(PbSO4)} = M(Pb) + M(S) + 4 M(O) = 207.2 + 32.1 + 4(16) = 303.3 \text{ g/mol}$$

$$S'm(PbSO4) = S'(PbSO4) * M(PbSO4) = 1.8 \cdot 10^{-7} \cdot 303.3 = 5.45 \cdot 10^{-5}$$

$$Sm(PbSO4) = 5,45 \cdot 10^{-5}$$
 g/l

Conclusion:

On remarque que : S' < S.

La solution d'un sel peu soluble diminue considérablement en présence d'une substance contenant un ion commun (c.à.d. l'addition de l'ion commun diminue la solubilité).

3. Cinétique chimique

3.1. Définition:

La cinétique chimique est le domaine de la chimie qui étudie la vitesse des réactions chimiques en fonction du temps. Qualitativement, on remarque qu'il existe des différents types de réactions :

- Des réactions très rapides voire violentes: par exemple les réactions explosions.
- > Des réactions très lentes, elles durent plusieurs années (comme la formation de la rouille), voire plusieurs siècles (comme la formation du charbon ou du pétrole).

Certaines sont même tellement lentes que les réactifs de départ sont considérés comme stables, par exemple la transformation du diamant carbone en graphite. On parle alors d'états « métastables ».

Les types des réactions dépendent de certains facteurs (**paramètre**) qui peuvent les accélérer ou ralentir, par exemple :

<u>La concentration des réactifs</u>: la vitesse augmente généralement en fonction de la concentration des réactifs.

<u>La température</u>: la vitesse d'une réaction augmente avec l'élévation de la température.

<u>La surface de contact</u>: la vitesse d'une réaction augmente avec l'étendue de la surface de contact.

<u>La catalyse</u>: l'utilisation de catalyseurs est habituelle pour augmenter la vitesse d'une réaction (dans le cas des enzymes).

3.2. Vitesse de réaction :

Sachant que la première importance dans toutes les applications de la chimie est de connaître la vitesse des réactions chimique.

Pour une réaction du type :

	A	\rightarrow	В
A t=0	Réactif		Produit
$A \ t_1$	$[A_0]$		0
$A\;t_2$	$[A_1]$		$[B_1]$
A t ₃	$[A_2]$		$[B_2]$

On détermine la vitesse moyenne V_{moy} de réaction entre 2 instants t1 et t2 pour les produits et les réactifs.

Selon les expressions :

$$V_{moy} = \frac{[B_2] - [B_1]}{t_2 - t_1} = \frac{\Delta[B]}{\Delta t}$$

 $V_{moy} = \frac{[B_2] - [B_1]}{t_2 - t_1} = \frac{\Delta[B]}{\Delta t}$ Ou alors : $V_{moy} = \frac{[B_2] - [B_1]}{t_2 - t_1} = \frac{\Delta[B]}{\Delta t}$

$$V_{moy} = \frac{d[B]}{dt} = -\frac{d[A]}{dt}$$
 $V_{moy} = \frac{\Delta[B]}{\Delta t} = -\frac{\Delta[A]}{\Delta t}$

$$V_{moy} = \frac{\Delta[B]}{\Delta t} = -\frac{\Delta[A]}{\Delta t}$$

Pour une réaction de type : a A + $b B \rightarrow c C +$ d D

La vitesse de la réaction à tout instant est :

$$v = -\frac{1 d[A]}{a dt} = -\frac{1 d[B]}{b dt} = \frac{1 d[C]}{c dt} = \frac{1 d[D]}{d dt}$$

Dans le cas ou une réaction se passe en phase gazeuse alors : $[A] = -\frac{P_A}{RT}$

3.3. Expression de la loi de vitesse, constante de vitesse et ordre d'une réaction :

Une équation dépend de l'ordre total de la réaction : $\alpha~A~+~\beta~B~\rightarrow~\gamma~C$

$$v = k[A]^{\alpha} [B]^{\beta}$$

K : est la constante de vitesse.

 $\alpha+\beta$: est l'ordre totale de la réaction.

 α et β : ordre partiel par rapport aux réactifs A et B.

Remarque: l'ordre de la réaction est toujours déterminé expérimentalement.

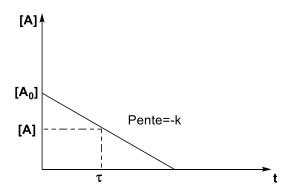
3.3.1. Réaction d'ordre 0 :

Pour une réaction du type :

$$\begin{array}{ccc} & & A & & \rightarrow & Produit \\ A t=0 & & A_0 & & 0 \end{array}$$

La vitesse est exprimée par : $v = -\frac{d[A]}{dt} = k[A]^0 = k$

La vitesse est une constante indépendante de la concentration : $\int_{[A_{01}]}^{[A]} -d[A] = k \int_{0}^{t} dt$


D'où : $[A] = -kt + [A_0]$: cette équation représente une droite de pente opposée à la constante de vitesse k. k : s'exprime en mol/Ls

$$t = \frac{1}{k} ([A_0] - [A])$$

Si : $t = t_{1/2} = \tau =$ demi-vie : le temps de demi-réaction c.à.d : le temps au bout duquel la moitié du réactif s'est transformée en produit ; $[A] = \frac{[A_0]}{2}$

$$\frac{[A_0]}{2} = -kt_{1/2} + [A_0] t_{1/2} = \tau = \frac{[A_0]}{2k}$$

D'où: \Rightarrow k: s'exprime en mol L⁻¹s⁻¹

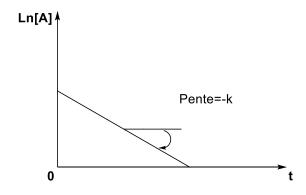
3.3.2. Réaction d'ordre 1 :

 $A \longrightarrow Produit$

$$v = -\frac{d[A]}{dt} = k[A]$$

$$\int_{[A_0]}^{[A]} \frac{-d[A]}{[A]} = k \int_0^t dt \qquad Ln \frac{[A_0]}{[A]} = kt$$

$$\Rightarrow t = \frac{1}{k} Ln \frac{[A_0]}{[A]} \tag{1}$$


$$Ln[A] = -kt + Ln[A_0]$$
 (2)

 $k: s\text{'exprime en temps}^{\text{-}1} \quad c.\grave{a}.d: s^{\text{-}1} \text{ ou min-}1 \text{ ou } h^{\text{-}1}$

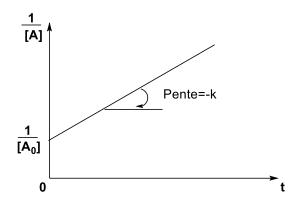
Temps de demi-réaction : $t = t_{1/2} = \tau = demi-vie \Rightarrow [A] = \frac{[A_0]}{2}$

$$t_{1/2} = \frac{1}{k} Ln \frac{[A_0]}{[A_0]/2}$$
 $\Rightarrow t_{1/2} = \frac{Ln2}{k}$

On peut déterminer expérimentalement l'ordre de la réaction en traçant : Ln[A] = f(t)

3.3.3. Réaction d'ordre 2 :

Dans un cas général : A + B → Produit


 1^{er} Cas: Si on a [A] = [B]

La vitesse est exprimée par : $v = -\frac{d[A]}{dt} = k[A][A] = k[A]^2$

$$\int_{[A_0]}^{[A]} \frac{-d[A]}{[A]^2} = k \int_0^t dt$$

 $\frac{1}{[A]} - \frac{1}{[A_0]} = kt$ d'où $k = \frac{1}{t} \left(\frac{1}{[A]} - \frac{1}{[A_0]} \right)$ k: s'exprime en mol⁻¹litre t⁻¹

Méthode graphique : alors on trace : $\frac{1}{[A]} = f(t)$

2^{eme} Cas: Si on a [A] \neq [B]

$$A + B \rightarrow Produit$$

La vitesse est exprimé par : $v = -\frac{d[A]}{dt} = k[A][B]$

$$[A_0] = a$$
 $[A]_t = a-x$

$$[B_0] = b$$
 $[B]_t = b-x$

La vitesse de disparation et d'apparition :

$$v = \frac{-d(a-x)}{dt} = \frac{-d(b-x)}{dt} = \frac{dx}{dt} = k[A][B] = k(a-x)(b-x) \Rightarrow \frac{dx}{(a-x)(b-x)} = kdt \Rightarrow$$

Or il est clair que : $\frac{1}{(a-x)(b-x)} = \frac{1}{(b-a)} (\frac{1}{a-x} - \frac{1}{b-x})$

$$\int_0^x \left(\frac{1}{a-x} - \frac{1}{b-x}\right) dx = \int_0^t k dt \quad \Rightarrow \quad \frac{1}{(b-a)} \left[-\ln(a-x) + \ln(b-x)\right]_0^x = kt$$

$$\Rightarrow \quad \frac{1}{(b-a)} \left[\ln b - x/a - x\right]_0^x = kt$$

$$\frac{1}{(b-a)} \left(Ln \frac{b-x}{a-x} - Ln \frac{b}{a}\right) = kt \quad \Rightarrow \frac{1}{(b-a)} \left(Ln \frac{a(b-x)}{b(a-x)}\right) = kt$$

3.4. Facteurs influençant la vitesse de réaction :

3.4.1. Influence des concentrations :

L es concentrations des réactifs influencent fortement la vitesse : plus les concentrations sont èlevées et plus la vitesse est grande.

3.4.2. Influence de la température sur la vitesse de réaction :

La température est aussi un facteur, en général une augmentation de la température T entraine une augmentation de la vitesse de réaction.

La loi empirique d'Arrhenius donne une expression analytique pour cette variation

b. Loi d'Arrhenius : Arrhenius a établi expérimentalement que la vitesse de réaction varie de façon exponentielle avec une variation de la température.

Loi de Van't Hoff:
$$\frac{dlnk}{dt} = \frac{\Delta H}{RT^2}$$
 à partir de là $\frac{dlnk}{dt} = \frac{E_a}{RT^2}$

Il a été établi expérimentalement que la constante de vitesse : $k = Ae^{-E_a/RT}$

A : facteur de fréquence de la réaction

T : Température absolue en Kelvins

R: 8.32 J/molK

Ea : Energie d'activation (c'est l'énergie seuil qui doit être franchie par les réactifs pour passer aux produits).

c. Détermination expérimentale de E_a :

Méthode graphique:

Expérimentalement, on traçant la courbe Lnk = f(1/T), on obtient une droite dont la pente est égale à -Ea/RT. Ainsi on déduit facilement E_a .

Méthode de calcul:

$$\begin{cases} \grave{a} & t_{1} \Rightarrow k_{1} = Ae^{-E_{a}/RT_{1}} \\ \grave{a} & t_{2} \Rightarrow k_{2} = Ae^{-E_{a}/RT_{2}} \end{cases} \Rightarrow Ln\frac{k_{1}}{k_{2}} = \frac{e^{-E_{a}/RT_{1}}}{e^{-E_{a}/RT_{2}}} = \exp(\frac{E_{a}}{RT_{2}} - \frac{E_{a}}{RT_{1}}) \Rightarrow Ln\frac{k_{1}}{k_{2}} = \frac{E_{a}}{R}(\frac{1}{T_{2}} - \frac{1}{T_{1}}) \Rightarrow E_{a} = \frac{RT_{1}T_{1}}{T_{2}-T_{1}}Ln\frac{K_{1}}{K_{2}}$$

Exercices

Exercice N°1:

La décomposition par la chaleur, à volume constant du pentoxyde de diazote, en gazeuse se fait suivant la réaction : $N_2O_{5(g)} \rightarrow 2NO_{2(g)} + \frac{1}{2}O_{2(g)}$

On constate que le temps t_1 au bout duquel la moitié de N_2O_5 initial a disparu est indépendant de la pression initiale.

- 1. En déduire l'ordre de la réaction.
- 2. Quelle est l'unité de k?
- **3.** Exprimer v en fonction de $d[N_2O_5]/dt$ depuis de $d[NO_2]/dt$ et de $d[O_2]/dt$.
- **4.** Quelle est l'équation différentielle liant k, $[N_2O_5]$ et $d[N_2O_5]/dt$.
- 5. Déduire de la question précédente, une relation liant [N₂O₅], k, t et [N₂O₅]₀.
- **6.** Exprimer $t_{1/2}$ en fonction de k. le temps de demi-réaction $t_{1/2}$ dépend-t-il de[N₂O₅]₀?

Exercice N°2:

On considère la réaction : $\mathbf{HbO_2} \to \mathbf{Hb} + \mathbf{O_2}$ traduisant la formation de l'oxyhémoglobine en hémoglobine. On constate qu'au bout de 9.10^3 secondes 30% de l'oxyhémoglobine (HbO₂) ont disparu. Sachant que la réaction est d'ordre 1.

- 1. Déterminer sa constante de vitesse k en justifiant l'équation servant à la calculer et en précisant son unité.
- 2. Déterminer le temps de demi-réaction.

Exercice N°3:

On mélange en proportions équimolaires un ester A et de la soude B. La concentration des deux corps est de 0.01 M. Au bout de 40 min, on a saponifié 50% de l'ester.

- **1.** Sachant que la réaction est d'ordre 2, quel est le temps au bout duquel on a saponifié 1/100 de l'ester initial ?
- **2.** Quelle sera la concentration des produits au bout de 24h ?

Exercice N°4:

Lors d'une cinétique, on a relevé les valeurs suivantes :

t(s)	0	30	60	120	180
C(mol.L ⁻¹)	0,120	0,109	0,096	0,072	0,048

- **1.** Tracer C=f(t).
- 2. Déduire l'ordre de la réaction.
- 3. Déterminer k la constante de vitesse.

Solutions

Exercice N°1:

$$N_2O_{5(g)} \rightarrow 2NO_{2(g)} + \frac{1}{2}O_{2(g)}$$

- **1.** Le temps t_1 au bout duquel la moitié de N_2O_5 initial a disparu est indépendant de la pression initiale \Rightarrow c'est une réaction d'ordre 1.
- 2. K s'exprimé le temps⁻¹ c.à.d. s⁻¹ ou mn⁻¹ ou h⁻¹.

3.
$$v = \frac{-d[N_2O_5]}{dt} = \frac{1}{2}\frac{d[NO_2]}{dt} = \frac{1}{\frac{1}{2}}\frac{d[O_2]}{dt}$$

$$v = \frac{-d[N_2O_5]}{dt} = \frac{1}{2}\frac{d[NO_2]}{dt} = 2\frac{d[O_2]}{dt}$$

4. Equation différentielle : $v = \frac{-d[N_2O_5]}{dt} = k[N_2O_5]$

5.
$$\frac{-d[N_2O_5]}{dt} = k[N_2O_5]$$

$$\frac{-d[N_2O_5]}{[N_2O_5]} = kdt$$

$$\int_{[N_2O_2]_0}^{[N_2O_5]} \frac{-d[N_2O_5]}{[N_2O_5]} = \int_0^t kdt$$

$$Ln\frac{-d[N_2O_5]}{[N_2O_5]_0} = -kt$$

Relation liante: $[N_2O_5] = [N_2O_5]_0 e^{-kt}$

6.
$$t_{1/2}=?$$

$$Ln\frac{-d[N_2O_5]}{[N_2O_5]_0} = -kt \implies t = \frac{1}{k}Ln\frac{[N_2O_5]_0}{[N_2O_5]}$$

Or à
$$t_{1/2}$$
 on a : $[N_2O_5]_{t1/2} = \frac{[N_2O_5]_0}{2}$

$$t_{\frac{1}{2}} = \frac{1}{k} Ln \frac{[N_2 O_5]_0}{[N_2 O_5]_0} = \frac{ln2}{k}$$

Le $t_{1/2}$ est indépendant de $[N_2O_5]_0$

7.
$$t_{1/2} = 460 \text{ s} \implies$$

$$k = \frac{\ln 2}{t_{\frac{1}{2}}} = \frac{\ln 2}{460} = 1,5 \ 10^{-3} \implies k = 1,5 \ 10^{-3} \ s^{-1}$$

Exercice N°2:

$$HbO_2 \rightarrow Hb + O_2$$

1.
$$v = \frac{-d[HbO_2]}{dt} = \frac{d[Hb]}{dt} = \frac{d[O_2]}{dt} = k[HbO_2]$$

$$\frac{-d[HbO_2]}{dt} = k[HbO_2] \Rightarrow \frac{-d[HbO_2]}{[HbO_2]} = kdt$$

$$Ln\frac{[HbO_2]_0}{[HbO_2]} = kt \ \Rightarrow \ k = \frac{1}{t}Ln\frac{[HbO_2]_0}{[HbO_2]}$$

L'unité de k est le temps⁻¹ c.à.d. s⁻¹ ou mn⁻¹ ou h⁻¹, 30% ont disparu au bout de 9 10³ s.

$$[HbO_2]_t = 100\%[HbO_2]_0 - 30\%[HbO_2]_0 = 70\%[HbO_2]_0$$

A.N:

$$k = \frac{1}{9 \cdot 10^3} Ln \frac{[HbO_2]_0}{0.7 [HbO_2]_0} = 3,96 \cdot 10^{-5} s^{-1} \implies k \approx 4 \cdot 10^{-5} s^{-1}$$

2. A $t_{1/2}$ on a

$$[HbO_2]_{\frac{t_1}{2}} = \frac{[HbO_2]_0}{2}$$

$$t_{\frac{1}{2}} = \frac{1}{k} Ln \frac{[HbO_2]_0}{\underline{[HbO_2]_0}} = \frac{Ln2}{k} = 17500 s$$

$$t_{\frac{1}{2}} = 291,66 \ min$$

Exercice N°3:

Ester A + Soude B
$$\rightleftharpoons$$
 Savon (sel) + Alcool

$$t=0$$
 [A]₀ [B]₀ 0

$$t_{eq} \qquad \ \ [A]_0 \text{ -x} \qquad \ \ [B]_0 \text{ -x} \qquad \qquad x \qquad \qquad x$$

$$[A]_0 = [B]_0$$
 et $[A]_t = [B]_t$

$$v = \frac{-d[A]}{dt} = k[A][B] = k[A]^2$$

1. La réaction est d'ordre partiel égal à : 1 pat rapport à chacun des réactifs elle est donc d'ordre égal : 2.

$$\frac{-d[A]}{[A]^2} = kdt \implies \int_{[A]_0}^{[A]} \frac{-d[A]}{[A]^2} = \int_0^t kdt$$

$$\frac{1}{[A]} - \frac{1}{[A]_0} = kt \implies t = \frac{1}{k} \left(\frac{1}{[A]} - \frac{1}{[A]_0} \right) \quad Eq1$$

Au bout de 4O', 50% ont été saponifié $\Rightarrow t_{1/2}=4O'$

$$k = \frac{1}{t_{\frac{1}{2}}} \left(\frac{1}{\underline{[A]_{\circ}}} - \frac{1}{[A]_{0}} \right) = \frac{1}{t_{\frac{1}{2}}} \left(\frac{2}{[A]_{0}} - \frac{1}{[A]_{0}} \right)$$

$$k = \frac{1}{t_{\frac{1}{2}}[A]_0}$$
 d'ou k depend de [A]₀

A.N:

$$k = \frac{1}{40\ 0.01} = 2.5\ min^{-1}mol^{-1}L$$

$$k = 2.5 \, min^{-1} mol^{-1} L$$

$$t_{1\%} = ?$$

$$[A]_{t_{1\%}} = 100\%[A]_{0} - 1\%[A]_{0}$$

$$[A]_{t_{1\%}} = 99\%[A]_{0} = 0,99[A]_{0}$$

$$\Rightarrow t_{1\%} = \frac{1}{2.5} \left(\frac{1}{0.99*0.01} - \frac{1}{0.01} \right)$$

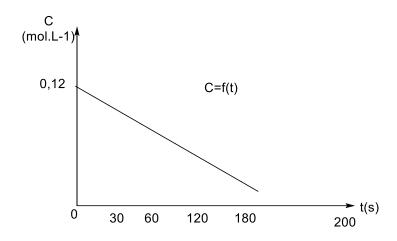
$$t_{1\%} = 0,404 \, \text{min} = 24,24 \, \text{s}$$

2. D'aprés l'eq 1:

$$\frac{1}{[A]} - \frac{1}{[A]_0} = kt = \frac{1}{[A]_0 - x} - \frac{1}{[A]_0}$$

$$\frac{1}{[A]_0 - x} = kt + \frac{1}{[A]_0} \implies [A]_0 - x = \frac{1}{kt + \frac{1}{[A]_0}}$$

$$\Rightarrow \chi = [A]_0 - \frac{1}{kt + \frac{1}{[A]_0}} = 10^{-2} - \frac{1}{2,5(24*60) + \frac{1}{10^{-2}}}$$


$$x = 0.973 \ 10^{-2} \ mol/l$$

d'ou à t_{24h} nous avons : [C]=[D]= $x = 0.973 \ 10^{-2} \ mol/l$

[A]=[B]=
$$x = 10^{-2} - 0.973 \ 10^{-2} = 2.7 \ 10^{-4} \ mol/l$$

Exercice N°4:

1. Tracer C=f(t).

Le tracé nous fait aboutir à une droite, les points sont alignés.

2. On détermine alors la vitesse moyenne à deux instants différents :

$$v = \frac{-\Delta C}{\Delta t} = \frac{C_1 - C_2}{t_1 - t_0} = -\frac{C_2 - C_1}{t_2 - t_1}$$

Avec $t_0 = 0$ et $C_0 = 0,12 \text{ mol/l}$

t(s)	30	60	120	180
C(mol/l)	0,109	0,096	0,072	0,048
t-t ₀	30	60	120	180
C-C ₀	-0,011	-0,024	-0,048	-0,072
V _{moy} (mol/LS)	-0,000366 ≈-0,0004	-0,0004	-0,0004	-0,0004

 V_{moy} =-0,0004 mol/LS c'est donc une constante qui ne varie pas en fonction des concentrations en réactifs donc c'est de l'ordre 0.

$$v = \frac{-dC}{dt} = k \implies -dC = kdt \implies \int_{C_0}^{C} -dC = k \int_{0}^{t} dt$$

$$\Rightarrow$$
 C₀-C = kt \Rightarrow $k = \frac{c_0 - c}{T}$

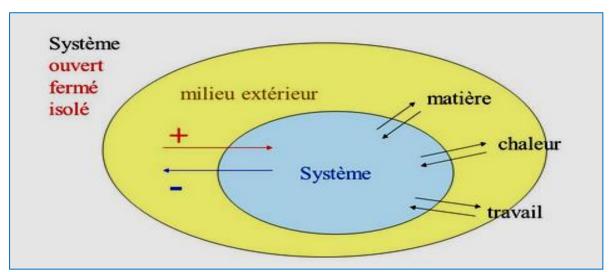
3. On calcul les valeurs de k aux instants t :

t(s)	30	60	120	180
k*10 ⁻⁴	3,66	4,00	4,00	4,00

Les valeurs de k soit sensiblement constante

4. Thermodynamique

L'objectif de chapitre est l'acquisition des notions élémentaires de thermochimie (Chaleurs de réactions).


C'est une partie de la thermodynamique chimique qui couvre tous les échanges d'énergie qui accompagne les changements d'état et les réactions chimiques.

Certaines réactions dégagent de la chaleur, ce sont des réactions exothermiques, et d'autres réactions peuvent absorber de la chaleur, elles sont endothermiques.

4.1. Systèmes et grandeurs thermodynamiques :

4.1.1. Définitions:

a. Un système : Un système thermodynamique est une partie de l'univers soumise aux études expérimentales et théoriques, choisi à priori par l'expérience. Tout ce qui ne fait pas partie du système (le reste de l'univers) constitue le milieu extérieur.

Les échanges entre le système et le milieu extérieur sont de type *Mécanique* : (force de pression), *Thermique* : (transfert de chaleur) et *Chimique* : (transfert de matière).

En fonction de l'échange de l'énergie et de la matière on peut distinguer trois systèmes :

✓ Système ouvert : peut échanger de l'énergie et de la matière avec le milieu extérieur.

Exemple : une cellule vivante est un système ouvert (échange de nutriments et de déchets au travers de la MP) (MP : Membrane plasmique)

✓ Système fermé: ne peut pas échanger de matière. Il peut échanger de la chaleur et du travail.

Exemple : une bouteille plein d'eau fermée dans un frigo ou dans un bain Marie.

✓ Système isolé: il n't a aucune échange avec le milieu extérieur.

Exemple: thermos.

Récapitulatifs:

Systèmes	Echange de l'énergie	Echange de la matière
Ouvert	oui	oui
Fermé	oui	non
Isolé	non	non

Remarque:

✓ La chaleur et l'énergie échangées entre un système et le milieu extérieur s'expriment, par convention, par un nombre algébrique :

Positif : si elles sont gagnées par le système aux dépens du milieu extérieur.

Négatif : si elles sont cédées par le système au milieu extérieur.

4.1.2. Variables d'état, fonction d'état :

a. L'état d'un système :

Il est définit par un certain nombre des grandeurs mesurables dites variables d'état telle que la Température (T), la pression (P), Le volume (V), nombre de mole (n), concentration (C), ...ect.

b. Variables d'état :

On appelle variables d'état les paramètres suffisant à définir sans ambiguïté l'état d'un système. Ces variables, en chimie sont essentiellement : la pression P, le volume V, la température T et la composition chimique (fraction molaire (xi), C, n,...).

d. Fonction d'état :

On peut choisir arbitrairement les variables d'état (celles qui sont faciles à mesurer). Dans ces conditions, les autres variables ne sont pas indépendantes. Elles sont des fonctions de variables d'état appelées : fonctions d'état.

Une fonction des variables d'état porte le non de fonction d'état. Les fonctions d'état sont additives.

Les fonctions d'état en thermodynamique relient les variables d'état T, P, V.

Exemple : un système constitué de n moles d'un gaz parfait pur, satisfait à la relation :

$$PV = nRT$$

Où R = 8,314 J.mol⁻¹.K⁻¹ est la constante des gaz parfaits. Il est donc défini par trois variables d'état à choisir parmi n, P, V et T.

Soit : V = nRT/P le volume V est une fonction d'état, T,P et n : sont des variables d'état.

Remarque:

La variation d'une fonction d'état ne dépend que de l'état initial et de l'état final du système.

Pour une transformation infiniment petite, la variation d'une fonction d'état est une différentielle totale exacte (dV).

Les variables d'état peuvent être classées en deux catégories :

<u>Variables extensives</u>: elles dépendent de la quantité de matière du système (grandeur proportionnelle à la taille de système), c.à.d. ce sont des variables additives (exemples : masse, nombre de moles, volume,...).

<u>Variables intensives</u>: elles sont indépendant de la quantité de matière du système, c.à.d. ce sont des variables sont non additives (exemples : pression, température, fraction molaire,...).

Remarque:

On peut trouver que le quotient de deux grandeurs extensives il peut donner une grandeur intensive. Exemple : masse volumique : ρ = m/v : est une grandeur intensive (intensive= extensive/extensive).

e. Etat d'équilibre :

Si le système est en équilibre signifié que ses variables d'état sont constantes au cours du temps et sont les mêmes en tout point du système. L'équilibre est:

✓ **Stable** : si l'application momentanée d'une petite perturbation est suivi d'un retour au même état d'équilibre.

✓ **Instable :** si l'application d'une perturbation amène le système à adopter un nouvel état d'équilibre (généralement stable).

Remarque:

Il existe un équilibre thermique, mécanique, chimique, lorsque respectivement la température, pression, composition sont constantes au cours du temps.

4.2. Transformation d'un système :

Pour un système il y a toujours un état initial et un état final, il y a modification d'une ou plusieurs variables d'état.

On distingue les transformations suivantes :

4.2.1. Les transformations réversibles : Une transformation réversible, est une suite continue d'états d'équilibre thermodynamique, elle passe par les mêmes états d'équilibre pour

aller d'un état 1 à un état 2 ou à l'inverse à condition que l'évolution soit effectuée de manière très lente.

- **4.2.2. Les transformations irréversibles :** Ce sont des transformations: naturelles, spontanées, brutales, brusques ou rapides. Il ne dépend pas de chemin suivi c.à.d. qui ne passe pas par des états d'équilibre.
- **4.2.3.** Les transformations cycliques : le système subit une série de transformations qui le ramène à son état initial (l'état initial et final présent les mêmes valeurs des variables d'état).
- **4.2.4.** Les transformations ouvertes : le système subit une série de transformations qui ne le ramène pas à son état initial, c.à.d. au moins une des variables d'état à une valeur différente dans l'état final.
- **4.2.5.** Les transformations adiabatiques : dans cette transformation il n'ya pas d'échange de chaleur avec le milieu extérieur, c.à.d. le Q=0 (à ne pas confondre avec une transformation isotherme).
- **4.2.6.** Les transformations isochores : elle se déroule à volume constant. (V=constante ; DV=0).
- **4.2.7.** Les transformations isobares : elle se déroule à pressions constante (P=constante ; DP=0).
- **4.2.8. Les transformations isothermes :** elle se déroule à température constante (T=constante, DT=0).
- **4.2.9.** Les transformations quasi-statiques : le système évolue infiniment lentement.
- **4.2.10. Les transformations chimiques :** définir l'état initial et final c.à.d. les réactifs et les produits ainsi que leur état physiques s, l et g.

4.3. Divers types d'énergie :

L'énergie est une grandeur physique ne peut être ni crée ni détruite, elle peut se transformer d'une sorte en une autre.

Elle se trouve sous diverses formes : Mécanique, électrique, lumineuse, mais surtout sous forme thermique.

Les quantités d'énergie correspondent à un travail ((mécaniques) et une quantité de chaleur (thermiques) représentées respectivement par ΔW et ΔQ (ou W et Q).

L'unité de référence en MKSA est le Joule ou Kilojoule (J ou KJ).

4.4. Premier principe de la thermodynamique :

Enoncé: « Au cours d'une transformation quelconque d'un système non isolé, la variation de son énergie interne est égale à la quantité d'énergie échangée avec le milieu extérieur, par transfert thermique (chaleur) et transfert mécanique (travail)».

- ✓ Le premier principe de la thermodynamique dit aussi principe de *conservation d'énergie*, c.à.d. l'énergie d'un système *isolé* reste constante ($\Delta U=0$).
- ✓ La variation d'énergie interne du système en cours d'une transformation est égale à la somme algébrique des énergies échangées W + Q.
- ✓ Autrement dit que, si on considère un système qui peut passer d'un état d'équilibre initial (1) à un état d'équilibre final (2), en empruntant différents chemins, le bilan thermodynamique : W+Q échangé entre le système et le milieu extérieur est le même pour tous les chemins suivis (on peut dire qu'Il ne dépend pas du chemin suivi).

4.4.1. Expression du travail et de la chaleur :

a. Travail des forces de pression (W)

Pour les transformations chimiques, le travail reçu par un système (déformable ou non rigide) est celui de force de pression extérieure au cours de la variation dV.

Exemple : déplacement d'un piston.

La réaction A→ B a lieu dans un cylindre fermé par un piston de surface S mobile, sans frottement et soumis à l'extérieur à la pression atmosphérique P=Pext, (Figure 1)

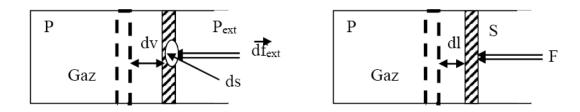


Figure 1 : Action de la force de pression extérieur sur un piston

Si on suppose un déplacement élémentaire dx sans frottement d'un piston, le travail élémentaire est alors : $\delta W = F_{ext} . dx$.

On définie la pression exercée par une force (F) sur la surface (S) du piston par : P = F/S

Donc le travail exercé sur ce piston est la force (F) par un déplacement (dx): dx = dV/S

$$\delta W = F_{\text{ext}} \cdot dx = P_{\text{ext}} \cdot S \cdot (dV/S) = P \cdot dV = P_{\text{ext}} (V_B - V_A) \Rightarrow \delta W = P_{\text{ext}} \cdot dV \text{ en [N.m], [J] ou cal}$$

(1 N.m = 1J) et (1 cal = 4.184 J)

Pext: étant la pression exercée par le milieu extérieur.

Le signe (-) intervient pour ce conformer à la convention de signe :

✓ Compression (dV<0) le gaz reçoit du travail : dW > 0;

✓ Détente (dV>0) le gaz fournit du travail : dW < 0.

Le travail fourni par le système au milieu extérieur sera par convention compté négativement :

$$\delta W = - P_{ext} \cdot dV$$

Pour une transformation finie entre l'état initial (1) et l'état final ;(2) la variation du travail

est:
$$W_{12} = -\int_{1}^{2} P dV$$

Pour chaque type de transformation, on peut calculer le travail reçu ou cédé par le système:

 \triangleright Si la transformation est isobare (P = cste)

$$W_{12} = -\int_{1}^{2} P dV = -P \int_{1}^{2} dV = -P(V_{1} - V_{2})$$

> Si la transformation est isochore (V = cste) : $\Rightarrow dV = 0$

$$W_{12} = -\int_{1}^{2} P dV = 0$$

 \triangleright Si la transformation est isotherme (T = cste):

$$W = -\int_{V_1}^{V_2} P dV$$

> Application :

Si le système est un gaz parfait : $PV = nRT \Rightarrow P = nRT/V$

Il s'ensuit : (t : constante)
$$\Rightarrow W = -nRT \int_{V_1}^{V_2} \frac{dV}{V} = -nRTLn \frac{V_2}{V_1} \Rightarrow W = -nRTLn \frac{V_2}{V_1}$$

Détente contre une pression extérieure $P_{ext} = 0 \implies W=0$.

Pour W réversible : $P_{ext} = Pgaz = nRT/V \Rightarrow W_{rev} = -nRTLnV_2/V_1$

Pour W irréversible : $P_{ext} \neq P_{int} \Rightarrow W_{irrev} = -P_2(V_2-V_1)$.

N.B: Les chiffres 1 et 2 représentent respectivement l'état initial et l'état final.

b. Notion de quantité de chaleur (Q)

La quantité de chaleur (d**Q**) est proportionnelle à l'écart de température observé Δ **T** et à la masse **m** du corps. D'où : dQ = mc Δ T la quantité de chaleur totale est :

$$Q = \int_{T_1}^{T_2} mcdT$$

<u>Chaleur massique C_m </u> (ou capacité calorifique massique): C'est la quantité de chaleur spécifique nécessaire pour élever de 1 K la température de 1 g de substance, elle appelée aussi Capacité thermique massique, elle s'exprime en $J.g^{-1}.K^{-1}$ (ou en cal. $g^{-1}.K^{-1}$).

<u>Chaleur molaire ou Capacité calorifique molaire C_{mol}</u>: la capacité calorifique molaire d'un corps pur est fonction de la température, elle s'exprime en en J.mol⁻¹.K⁻¹ (ou en cal.mol⁻¹.K⁻¹).

Il existe de relation de type : C= a+ bT+ cT² (a, b, c étant des constantes caractéristiques du corps pur).

Il définit des capacités calorifiques Cp et Cv, respectivement à pression constante et à volume constant, qui sont en général fonction de la température.

Pratiquement des valeurs moyennes peuvent être utilisées, elles sont considérées comme constantes dans l'intervalle de température exemple :

$$C_p = \left(\frac{\Delta Q_p}{\Delta T}\right); \quad C_v = \left(\frac{\Delta Q_v}{\Delta T}\right)$$

On introduit alors le rapport γ des capacités calorifiques isobare et isochore :

$$\gamma = \frac{C_p}{C_v}$$

γ est un paramètre intensif sans dimension.

Pour les gaz parfaits : Diatomiques : Cp=7/2, Cv= 5/2, γ =1.40

Monoatomiques : Cp=5/2, Cv= 3/2, $\gamma \approx 1.66$

Dans tous les cas, on vérifie la relation de Mayer pour un gaz parfait :

$$C_n - C_v = R$$

On en déduit les relations suivantes : $\frac{C_p}{R} = \frac{\gamma}{\gamma - 1}$ et $\frac{C_v}{R} = \frac{1}{\gamma - 1}$

<u>Cas des gaz</u>: on considère plutôt la chaleur molaire (capacité calorifique d'une mole de gaz ou capacité thermique molaire).

On définit C_v pour une transformation à volume constant : $C_v = (\frac{\Delta Q_v}{\Lambda T})$

On définit C_p pour une transformation à pression constante : $C_p = \left(\frac{\Delta Q_p}{\Delta T}\right)$

Relation de Mayer : En thermodynamique on a pu démontrer que : $C_p - C_v = R$

(R :Cte des gaz parfaits= 8,82 J/mol.K ou 1.998≈ 2 cal/mol.K, ou 0,082 l.atm/mol.K)

$$\Delta Q = m C_m \Delta t$$
 ou bien $\Delta Q = n C_{mol} \Delta t$

Remarque:

La chaleur spécifique moyenne de l'eau est : $C_{eau} = 4.184~J.g^{\text{--}1}.K^{\text{--}1}~ou~1~cal.g^{\text{--}1}.K^{\text{--}1}$

La définition de la capacité calorifique s'applique également à un mélange.

Capacité calorifique=\(\sum \) Chaleur spécifique molaires x nombre de mole du mélange

Chaleur latentes L:

La chaleur latente molaire est la quantité de chaleur qu'il faut mettre en jeu pour faire passer une mole, à température constante, d'un état physique à un autre. A chaque changement d'état correspond une chaleur latente. Elle est généralement exprimée en J ou cal ou kcal par mole ou par gramme.

Exemple:

Quand on chauffe de l'eau liquide, sa température augmente ; mais à sa T° d'ébullition sous la pression considérée, l'apport de la chaleur ne se traduit pas par une élévation de température mais par un changement d'état physique.

On observe trois types:

1. La quantité de chaleur qui doit être absorbé pour fondre une substance est appelés chaleur latente de fusion (L_f) ou enthalpie de fusion (ΔH_f).

Chaleur latente de fusion (L_f ou ΔH_f): solide \rightleftharpoons liquide

2. Dans le cas d'une vaporisation, on dira chaleur latente de vaporisation à pression constante (L_v) ou enthalpie de vaporisation à pression constante (ΔH_v) .

Chaleur latente de vaporisation (L_v ou ΔH_v): liquide \rightleftharpoons gaz

3. Dans le cas d'une sublimation, on parlera de chaleur latente de conversion de l'état solide à l'état gazeux (L_s ou ΔH_s).

Chaleur latente de sublimation (L_s ou ΔH_s): solide \rightleftharpoons gaz

Remarque:

Pour un corps de masse m : Q = m L (chaleur latente).

<u>Calorimétrie</u>: Son principe fondamental est que si deux systèmes sont en équilibre thermique, la quantité de chaleur cédée par un système est gagnée par autre.

Ces quantités de chaleur sont mesurées à l'aide de calorimétrie.

Les relations fondamentales sont :

$$\Delta Q = m C_m \Delta t$$
 ou bien $\Delta Q = n C_{mol} \Delta t$

 ΔQ : quantité de chaleur cédée ou reçue (en J).

M : masse de substance en g.

N : nombre de mole.

C_m: chaleur massique (en J/g.K)

C_{mol}: chaleur molaire ou capacité calorifique molaire (en J/mol.K)

Δt : variation de température.

Remarque:

On distinguera les transformations :

Si Q>0: transformations <u>Endothermique</u> lorsqu'elles sont accompagnées d'absorption d'énergie thermique.

Si Q<0 : transformations <u>Exothermique</u> lorsqu'elles sont accompagnées de dégagement d'énergie thermique.

Exercices

Exercice N°1:

Calculer la constante des gaz parfaits (R) en :1/L. atm/mol.K; 2/ L. mmHg/mol.K; 3/ J. /mol.K; 4/ Cal/mol. K.

Exercice N°2:

Un récipient divisé en deux parties par une membrane, la 1ère partie contient 5 litres d'un gaz à 9 atm et à T. la 2ème contient 10 litres d'un autre gaz à 6 atm et à T.

- 1. On libère la membrane : calculer la pression et le volume de chaque gaz.
- 2. On brise la membrane : calculer PT et les pressions partielles.

Exercice N°3:

Calculer Q à pression atmosphérique constante nécessaire pour porter la température :

- 1. de 180 g d'eau de 0°C à 100°C à l'état liquide.
- 2. de 220g de glace de 0°C à 100°C à 1'état vapeur.
- 3. de 330g de glace de -10° C à 127°C.
- **4.** de 14,5g d'air de 67°C à 830°C. Selon que : a) V=Cste ; b) P = Cste.

Données: $C_P (H_2O, l) = 2C_P (H_2O, s) = 1 \text{ cal/g.K}; C_P (H_2O, g) = 8,22 \text{ cal/mol.K}; Lfus (glace) = 334,4 J/g à 0°C et Lvap (H2O, l) = 540 cal/g à 100°C; Cv (air) = 20,9 J/mol.K; M(air) = 28,96 g/mol.$

Exercice N°4:

Dans un calorimètre contenant 1Kg d'eau à 15°C on verse 1 Kg d'eau à 65°C, la température finale est de 38,8 °C.

1. Calculer la valeur en eau du calorimètre.

On reprend ce calorimètre contenant 1Kg d'eau à 15°C, on y met 50g de glace à 0°C la température finale est de 10,87°C.

2. Calculer la chaleur latente de fusion de la glace Lfus.

On reprend ce même calorimètre contenant 1Kg d'eau à 15°C, on y met 50g de glace à -5°C, la température finale est de 10,76°C.

3. Calculer la chaleur massique de la glace.

Exercice N°5:

Déterminer le travail mis en jeu par 2 litres de gaz parfait maintenus à 25° sous la pression de 5 atmosphères (état 1) qui se détend de façon isotherme pour occuper un volume de 10 litres (état 2); **a)** de façon réversible ; **b)** de façon irréversible.

A la même température le gaz est ramené de l'état 2 à l'état 1. Déterminer le travail mis en jeu lorsque la compression s'effectue : c) de façon réversible ; d) de façon irréversible.

Solutions

Exercice N°1:

Dans les conditions normales CNTP (P= 1atm, T= 273K), une mole de gaz parfait occupe un volume de 22.4 litres :

$$1 atm = 1,013 \cdot 10^5 Pa = 760 mmHg$$

$$1 I = 1 Pa.m^3$$

$$R = \frac{PV}{nT} = \frac{1.22,4}{273} = 0.082 \ l. \ atm/mol. \ K$$

$$R = \frac{PV}{nT} = \frac{760.22,4}{273} = 62,35 \ l. \ mmHg/mol. \ K$$

$$R = \frac{PV}{nT} = \frac{1,013 \cdot 10^5 \cdot 22,4 \cdot 10^{-3}}{273} = 8,31 \, J/mol. \, K$$

$$R = 1,99 \ cal/mol. K$$

Remarque:

$$1 \ cal = 4,18 \ J \ et \ 1L. \ atm = 1,013 \ .10^2 \ J = 24,23 \ cal$$

Exercice N°2:

1. Quand on libère la membrane, on a un équilibre mécanique :

$$P_1' = P_2'$$

$$P_1V_1 = P_1'V_1' = 5.9 = 45....(1)$$

$$P_2V_2 = P_2'V_2' = 10.6 = 60....(2)$$

$$V_1 + V_2 = V_1' + V_2' = 15 \dots \dots (3)$$

$$(1)/(2) donne \frac{V_1'}{V_2'} = \frac{45}{60} \implies V_1' = \frac{3}{4}V_2' \ dans (3) V_1' = 6,43 \ l \ et \ V_2' = 8,57 \ l$$

$$P_1' = \frac{P_1 V_1}{V_1'} = 7 \ atm = P_2'$$

2. Quand on brise la membrane, les deux gaz se mélangent et occupent le même volume

 $V_T = 15 L$:

$$P_T V_T = n_T RT \qquad \Rightarrow \qquad P_T = \frac{(n_1 + n_2)}{V_T} = \frac{(9.5) + (6.10)}{15} = 7 \text{ atm}$$

$$P_1 V_1 = P_1' V_T \quad \Rightarrow \quad P_1' \frac{P_1 V_1}{V_T} = \frac{9.5}{15} = 3 \text{ atm}$$

$$P_T = P_1' + P_2' \quad \Rightarrow \quad P_2' = P_T - P_1' = 7 - 3 = 4 \text{ atm}$$

Exercice N°3:

La quantité de chaleur Q nécéssaire à cette masse pour passer de T_1 à T_2 est :

1.
$$Q = mC_p(H_2O, l)\Delta T = 180.1.(373 - 273) = 18000 cal$$

2.
$$Q = Q_{fusion} + Q_{liquide} + Q_{vaporisation} = mL_{fus} + mC_p(H_2O, l)\Delta T = mL_{vap}$$

 $Q = 220,334 + 220.1.(373 - 273) + 220.540 = 17600 + 22000 + 118800 = 158400 cal$

3.
$$Q = Q_{solide} + Q_{fusion} + Q_{liquide} + Q_{vaporisation} + Q_{gaz}$$

$$Q = mC_p(H_2O, s)\Delta T + mL_{fus} + mC_p(H_2O, l)\Delta T + mL_{vap} + nC_p(H_2O, g)\Delta T$$

$$Q = 330.0, 5.(373 - 263) + 330.334, 4 + 330.1.(373 - 273) + 330/18.8, 22(400 - 373)$$

$$Q = 1 + 650 + 26400 + 33000 + 178200 + 4068, 9 = 243318, 9$$

4. A volume constant:

$$Q = nC_v \Delta T = \frac{14.5}{28.96}.20.9.(1103 - 340) = 797.35 J$$

A pression constant, on considère que l'air est un gaz parfait :

$$C_p - C_v = R \implies C_p = C_v + R = 20.9 + 8.31 = 29.21 \text{ J/molK}$$

 $Q = nC_v \Delta T = \frac{14.5}{28.96} \cdot 29.21 \cdot (1103 - 340) = 11157 \text{ J}$

Exercice N°4:

$$\sum Q_i = 0 \Rightarrow Q_1 + Q_2 + Q_{cal} = 0$$

$$m_1 C_p(H_2O, l) (T_{eq} - T_1) + m_2 C_p(H_2O, l) (T_{eq} - T_2) + \mu C_p(H_2O, l) (T_{eq} - T_1) = 0$$

$$\mu = \frac{m_1 (H_2O, l) (T_{eq} - T_1) - m_2 (H_2O, l) (T_{eq} - T_2)}{(T_{eq} - T_1)} = 100,84 g$$

$$\sum Q_i = 0 \implies Q_1 + Q_{fus} + Q_2 + Q_{cal} = 0$$

$$m_1 C_1(H_2Q_1)(283.87 - 288) + m_2 L_{cal} + m_3$$

$$m_1 C_p(H_2 O, l)(283,87 - 288) + m_2 L_{fus} + m_2 (H_2 O, l) (T_{eq} - 273)$$

+ $\mu C_p(H_2 O, l)(283,87 - 288) = 0$

$$L_{fus} = \frac{-m_1 C_p(H_2O,l)(283,87-288) - m_2(H_2O,l) \left(T_{eq} - 273\right) - \mu C_p(H_2O,l)(283,87-288)}{m_2}$$

$$L_{fus} = \frac{-1000(283,87-288)-50(283,87-273)-100,84(283,87-288)}{50}$$

$$L_{fus} = 80,05 \ cal/g$$

$$\sum Q_i = 0 \Rightarrow Q_1 + Q_2 + Q_{fus} + Q_{solide} + Q_{cal} = 0$$

$$m_1 C_p(H_2 O, l)(283,76 - 288) + m_2 C_p(H_2 O, s)(273 - 268) + m_2 L_{fus}$$

+ $+ m_2 C_p(H_2 O, l)(283,76 - 273) + \mu C_p(H_2 O, l)(283,76 - 288) = 0$

$$\begin{split} &C_p \left(H_2 O, s \right) \\ &= \frac{-m_1 C_p (H_2 O, l) (283,76 - 288) - m_2 L_{fus} - m_2 C_p (H_2 O, l) (283,76 - 273) - \mu C_p (H_2 O, l) (283,76 - 288)}{m_2 (273 - 268)} \right) \\ &C_{p(H_2 O, s)} = \left(\frac{-1000 (283,76 - 288) - 50 \cdot 80 - 50 (283,76 - 273) - 100,84 (283,76 - 288)}{50 (273 - 268)} \right) \end{split}$$

$$C_{n(H_2,0,s)} = 0.5 \, cal/g.K$$

Exercice N°5:

a) Travail mis en jeu pour la détente réversible isotherme :

$$P_{ext} = P_{int} = P_{gaz}$$
 à chaque instant (transformation trés lente)

$$W_{r \neq v}(1 \rightarrow 2) = -\int_{V_1}^{V_2} P_{int} dV = -\int_{V_1}^{V_2} P_{gaz} dV = -nRT \int_{V_1}^{V_2} \frac{dV}{V} = -nRT \int_{V_1}^{V_2} \frac{V_2}{V_1} dV$$

$$W_{rév}(1 \to 2) = -P_1 V_1 ln \frac{V_2}{V_1} = -5.2 ln \frac{10}{2} = -16.09$$

$$W_{r \neq v}(1 \rightarrow 2) = -16,09 \ l. \ atm$$

b) Travail mis en jeu pour la détente irrréversible isotherme :

$$P_{ext} = P_{finale} = P_{gaz} = constante (transformation rapide)$$

$$W_{irrév}(1 \to 2) = -P_1(V_2 - V_1) = -1(10 - 2) = -8.0$$

$$W_{irr\'ev}(1 \rightarrow 2) = -8.0 \ l. \ atm$$

c) Travail mis en jeu pour la pression réversible isotherme :

$$W_{r\acute{e}v}(2\to 1) = -\int_{V_2}^{V_1} P_{int} dV = -\int_{V_2}^{V_1} P_{gaz} dV = -nRT \int_{V_2}^{V_1} \frac{dV}{V} = -nRT ln \frac{V_1}{V_2}$$

$$W_{r\acute{e}v}(2 \to 1) = -P_1 V_1 ln \frac{V_2}{V_1} = -5.2 ln \frac{2}{10} = -16.09$$

$$W_{r \neq v}(2 \rightarrow 1) = 16,09 \ l. \ atm$$

d) Travail mis en jeu pour la pression irrréversible isotherme :

$$W_{irrév}(2 \to 1) = -P_1(V_1 - V_2) = -5(2 - 10) = -40.0$$

$$W_{irrén}(2 \to 1) = -40.0 \ l. \ atm$$

Remarque:

- Le travail W dépend du chemin suivi.
- > On récupère moins de travail quand le gaz se détend d'une manière irréversible.
- La compression irréversible demande beaucoup plus de travail.

4.4.2. Expression de l'énergie interne et de l'enthalpie :

a. Energie interne (U)

Pour tout système fermé, il existe une fonction d'état, gradeur conservatrice appelée énergie interne (représenté par le symbole U). Cette énergie est une fonction d'état de même pour W et Q.

$$\Delta U = W + Q$$

Dans une transformation cyclique ou un système isolé on a : $\Delta Q + \Delta W = 0$

Si par contre le système passe par l'état 1 à un état 2 et en revient pas à son état initial alors :

$$\Delta U = U_2 - U_1 = \Delta Q + \Delta W$$

Si le : $\Delta U > 0$: le système reçoit de l'énergie.

 $\Delta U < 0$: le système cède de l'énergie.

Pour une transformation infinitésimale : $dU = \delta W + \delta Q$

b. Enthalpie (H)

L'enthalpie est une potentielle thermodynamique (représente à l'énergie totale d'un système thermodynamique). Elle comprend l'énergie interne (U) du système, à laquelle est additionné le travail que ce système doit exercer contre la pression extérieure pour occuper son volume.

$$H = U + PV$$

Unité: [Joules] ou en [calories]

L'enthalpie est une fonction d'état (comme l'énergie interne) et elle considérée comme une grandeur extensive. La variation d'enthalpie correspond à la chaleur absorbée (ou dégagée), lorsque le travail n'est dû qu'aux forces de pression. Dans ce cas, la variation d'enthalpie est positive ou négative dans le cas où la chaleur est libérée.

On a déjà vu que pour une transformation infinitésimale : $dU = \delta Q + \delta W$

Or:
$$dU = dQ - PdV$$
 (sachant que $\delta W = -PdV$)

$$dH = dU + d(PV) = dU + PdV + VdP$$

$$dH = dQ - PdV + PdV + VdP$$
 \Rightarrow $dH = dQ + VdP$

Dans le cas général où les réactions chimiques sont effectuées à volume constant ou à pression constante, la quantité de chaleur absorbée ne dépend que de l'état initial et l'état final.

c. Chaleur de réaction à volume constant (Q_v) (réactions isochores)

$$U = Q + W \text{ d'où } \Delta U = \Delta Q + \Delta W \text{ or à V cte } \rightarrow dV = 0 \rightarrow \Delta W = 0 \text{ car}$$

$$\Delta W = \int_{v_1}^{v_2} -PdV$$

Donc à volume constant on a : $\Delta U = Q_v$

$$\Delta U = Q_v = mC_v \Delta T =$$

$$Cv = (dU/dT)_v$$

Cv : Capacité calorifique à volume constant.

d. Chaleur de réaction à pression constant (Q_p) ((réactions isobares)

Le premier principe s'exprime : $\Delta U = \Delta Q + \Delta W$ soit $\Delta U = \Delta Q_p + \Delta W$

$$\Delta W = -P_{\text{ext}} \Delta V = -P_{\text{ext}} (V_f - V_i)$$

$$\Delta U = \Delta Q_p + \Delta W = Q_p - P_{ext}(V_f - V_i) = U_f - U_i \quad or \quad Q_p = \Delta U + P \Delta V$$

$$H = U + PV$$
 alors $\Delta H = \Delta U + \Delta (PV)$

On pourra poser alors : H = U + PV

U : énergie interne

PV : énergie élastique ; PV est l'énergie liée au déplacement des molécules dans le fluide.

A pression constant on a : $\Delta H = Q_p$

$$\Delta H = \Delta Q_v = mC_p \Delta T$$

$$C_p = (dH/dT)_p$$

Cp: Capacité calorifique à pression constante.

On peut aussi déterminer : $\Delta H = \Delta U + \Delta (PV)$ or PV = nRT

$$\Delta H = \Delta U + \Delta (nRT)$$

Or R et T sont des constantes $\rightarrow \Delta H = \Delta U + RT \Delta n$

Avec Δn : variation du nombre de moles gazeuses

$(\Delta n = \sum nombre \ de \ moles \ des \ produits \ gazeux - \sum nombre \ de \ moles \ des \ réactifs \ gazeux)$

On peut alors écrire : $\mathbf{Q}_{\mathbf{p}} = \mathbf{Q}_{\mathbf{v}} + \mathbf{R} \mathbf{T} \Delta \mathbf{n}$

Réaction exothermique : $\Delta H < 0$

Réaction endothermique : $\Delta H > 0$.

 ΔH_r : renseigne sur le transfert thermique associé à une réaction.

 $\Delta H_r < 0$: Réaction exothermique \rightarrow la réaction chimique dégage de la chaleur.

 $\Delta H_r > 0$: Réaction endothermique \rightarrow la réaction chimique absorbe de la chaleur.

e. Relation entre Cp et Cv (relation de MAYER):

Sachant que : dH = dU + d(PV), et que : $dH = Qp = nC_p dT$ et $dU = Qv = nC_v dT$

Donc : $nC_p dT = nC_v dT + d(PV)$, et : PV = nRT;

Donc : $nC_p dT = nC_v dT + d(nRT) = nC_v dT + nRdT$

On aura la relation de MAYER : $C_p - C_v = R$

f. Relation entre Qv et Qp:

Appliquons la relation des gaz parfaits : $PV = nRT \iff P.\Delta V = \Delta n.RT$.

Ou Δn : représente seulement la variation du nombre de moles gazeux entre l'état initial et l'état final; soit :

 $\Delta n = \sum n(g, produits) - \sum n(g, réactifs).$

 $\Delta H = \Delta U + (\Delta n)_{gaz}.RT$

Soit : $\mathbf{Q}\mathbf{p} = \mathbf{Q}\mathbf{v} + \Delta \mathbf{n.RT}$

4.4.3. Diagramme de Clapeyron :

Ce diagramme représente l'évolution des transformations lorsque l'on porte la pression **P** en ordonnée et le volume **V** en abscisse.

a. Les transformations réversibles

Représentation dans un diagramme de Clapeyron (P,V) et calcul de W, Q, ΔU et ΔH . Dans les paragraphes qui suit de ce chapitre, on a va étudier les quatre transformations (isotherme, isochore, isobare et adiabatique).

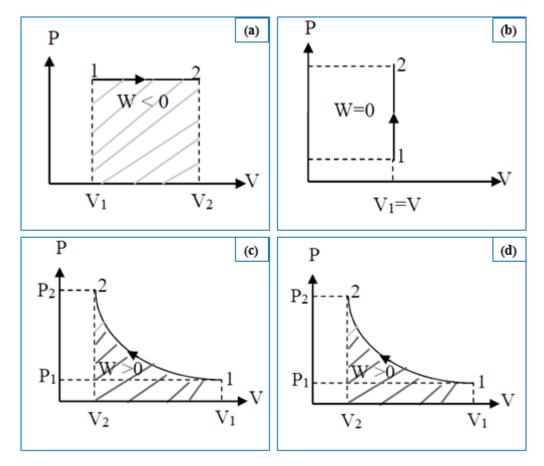


Figure: Diagramme de Clapeyron: (a): Transformation isochore, (b): Transformation isotherme; (c): Transformation isobare; (d): Transformation a diabatique.

Transformation isochore (V = cste) (Figure (a))

Etat initial
$$\rightarrow$$
 Etat final PV=nRT (T_1, V_1, P_1) $(T_1, P_2, V_2=V_1=V)$ V= C^{ste}

a) Calcul:

$$W = 0$$

$$dU = nC_v dT \; ; \; \Delta U = n \int_{T_1}^{T_2} C_v dT = nC_v (T_2 - T_1); \quad C_v \neq C_v (T)$$

$$dH = nC_p dT \; ; \; \Delta H = n \int_{T_1}^{T_2} C_p dT = nC_p (T_2 - T_1); \quad C_p \neq C_p (T)$$

$$Q_v = \Delta U = nC_v (T_2 - T_1)$$

Transformation isotherme (T = cste) (Figure (b))

Etat initial
$$\rightarrow$$
 Etat final $PV = nRT = C^{ste}$
 (T_1, V_1, P_1) $(P_2, V_2, T_2 = T_1 = T)$ soit : $P = \frac{constante}{V}$ (hyperbole)

b) Calcul:

$$\begin{split} W &> 0, \quad W = -\int_{V_1}^{V_2} P dV, \\ W &= -nRT \int_{V_1}^{V_2} \frac{dV}{V} = -nRTLn \frac{V_2}{V_1} = nRTLn \frac{V_1}{V_2} \quad \Rightarrow \quad W = nRTLn \frac{P_2}{P_1} \\ \Delta U &= 0; \; \Delta H = 0; \; (loi \; de \; Joule \;)W \; > 0 \\ \Delta U &= Q + W = 0; \; \Delta d'ou: Q = -W \end{split}$$

Transformation isobare (P= cste) (Figure (c))

Etat initial
$$\rightarrow$$
 Etat final PV=nRT (T_1, V_1, P_1) $(T_2, V_2, P_2=P_1=V)$ P=C^{ste}

c) Calcul:

$$\begin{split} \delta W &= -PdV \; ; \quad W = -\int_{V_1}^{V_2} PdV = P(V_1 - V_2) \\ dU &= nC_v dT \; ; \; \Delta U = n\int_{T_1}^{T_2} C_v dT = nC_v (T_2 - T_1); \quad C_v \neq C_v (T) \\ dH &= nC_P dT \; ; \; \Delta H = n\int_{T_1}^{T_2} C_p dT = nC_p (T_2 - T_1); \quad C_p \neq C_p (T) \\ Q_p &= \Delta H = nC_p (T_2 - T_1) \end{split}$$

Transformation adiabatique (dQ = 0) (Figure (d))

Etat initial
$$\rightarrow$$
 Etat final (T_1, V_1, P_1) (P_2, V_2, T_2)

La transformation adiabatique est caractérisée par $\delta Q=0$, il en résulte ; $dU=\delta W$

$$nC_v dT = -PdV$$
 ou bien: $nC_v dT + PdV = 0$

$$Or: C_p - C_v = R$$
 et $\gamma = \frac{C_p}{C_v}$; on tire: $C_v = \frac{R}{\gamma - 1}$

par suite:
$$\frac{nR}{\gamma - 1}dT + PdV = 0$$
 avec: $d(PV) = PdV + VdP = nRdT$

On montre que:

$$\frac{dP}{P} + \gamma \frac{dV}{V} = 0$$
 c'estla différentielle logarithmique de la relation: $PV^{\gamma} = C^{ste}$

En utilisant les variables (T, V) ou (T, P), on obtient les relations :

$$PV^{\gamma-1} = C^{ste}$$
 ou $T^{\gamma}P^{1-\gamma} = C^{ste}$

d) Calcul:

$$PV^{\gamma} = C^{ste}$$
 soit $P = \frac{C^{ste}}{V^{\gamma}}$

$$Q = 0$$

$$\Delta U = nC_{v}(T_{2} - T_{1})$$

$$\Delta H = nC_p(T_2 - T_1) = \gamma \Delta U$$

$$W = \Delta U = nC_{v}(T_{2} - T_{1}) = \frac{nR}{\gamma - 1}(T_{2} - T_{1})$$

soit:
$$W = \frac{P_2 V_2 - P_1 V_1}{\gamma - 1}$$

Remarque:

Comme:
$$\gamma > 1 \Rightarrow (\frac{dP}{dV})_{adiabatique} > (\frac{dP}{dV})_{isotherme}$$

Exercices

Exercice N°1:

On comprime de façon adiabatique 0,35 mol d'un gaz parfait de l'état P0 = 1atm, V0 = 10 l, à l'état (P,T). Calculer : P, V, T, W, Q, ΔU et ΔH de cette transformation que l'on effectue selon un processus réversible où T=1,6T0 ou un processus irréversible où P=2,5 atm. Cv=10,46 J/mol. K.

Exercice N°2:

On fait subir à une mole de gaz parfait de chaleur spécifique Cv=12,48~J/ mol. K, un cycle réversible à partir de son état initial ($P_1=2atm,\,T_1=300K$). Une compression isotherme de P_1 à $P_2=10~atm$; puis une détente adiabatique de l'état P_2 à $P_3=2~atm$; suivi d'un chauffage à pression constante qui le ramène à l'état 1.

- 1. Représenter ces transformations dans le plan de Clayperon (P, V).
- 2. Calculer: W, Q, ΔU et ΔH pour chaque transformation et pour le cycle.

Exercice N°3:

On vaporise lentement 36 g d'eau liquide à 100° C et sous une atmosphère ; la vapeur d'eau considérée comme un gaz parfait se détend réversiblement à température constante jusqu'à P = 0,25 atm. Calculer : W, Q, Δ U et Δ H.

Sachant que : L_{vap} (H₂O, l) = 9,76 kcal/mol (à 1atm ; 100°C).

Exercice N°4:

Un mélange (air-essence) subit une transformation de l'état (1) à l'état (2) suivant trois chemins différents (a, b et c) avec :

La 1ére transformation est isochore puis isobare (chemin a), la 2éme est isobare puis isochore (chemin b) et la 3éme est telle que PV=cste (chemin c).

Etat (1): $P_1 = 1$ bar; $V_1 = 3$ l

Etat (2): $P_1 = 3$ bar; $V_1 = 1$ l

- 1. Représenter les trois transformations en coordonnées de Clapeyron.
- **2.** Calculer ΔU entre l'état (1) et l'état (2).
- **3.** Calculer le travail dans les trois cas et déduisez les chaleurs échangées; sont-elles reçues ou cédées par le système?

Solutions

Exercice N°1:

> transformation adiabatique réversible :

$$C_p - C_v = R \implies C_p = R - C_v = 10,46 + 8,31 = 18,77 \text{ J/mol.K.}$$

$$\gamma = \frac{C_p}{C_v} = \frac{18,77}{10,46} = 1,8$$

$$T_0 = \frac{P_0 V_0}{nR} = \frac{1 \cdot 10}{0.35 \cdot 0.082} = 348,43 K$$

 $T=1,6 T_0 = 1,6 . 348,43 = 557,49 K$

$$T_0 V_Q^{\gamma - 1} = T V^{\gamma - 1} \implies V^{0,8} = \frac{T_0 V_0^{\gamma - 1}}{T} = \frac{348,43 \cdot 10^{0,8}}{557,49}$$

$$P = \frac{nRT}{V} = \frac{0,35.0,082.557,49}{5,56} = 2,87 \ atm$$

Q=0.

$$\Delta U = W = nC_v \Delta T = 0.35.10.46.(557.49 - 348.43) = 765.36$$

$$\Delta U = \gamma \Delta U = 1, 8.765, 36 = 1374, 15 J$$

> Transformation adiabatique irréversible :

$$Q = 0 \implies \Delta U = W_{irr}$$

$$nC_{v}(T-T_{0}) = -P(V-V_{0}) \Rightarrow nC_{v}(T-T_{0}) = -P(\frac{nRT}{P} - \frac{nRT_{0}}{P_{0}})$$

$$\Rightarrow nC_{v}(T-T_{0}) = -nRT + \frac{nRPT_{0}}{P_{0}}$$

$$10.46(T-348,43) = -8,31T + \frac{8,31.2,5.348,43}{1}$$

$$T = 579,97 \text{ K}$$

$$T_{irréversible} = T_{réversible}$$

$$V = \frac{nRT}{P} = \frac{0,35.0,082.579,97}{2.5} = 6,65 l$$

Q = 0.

$$\Delta U = W = nC_v \Delta T = 0.35.10.46.(579.97 - 348.43) = 847.66$$

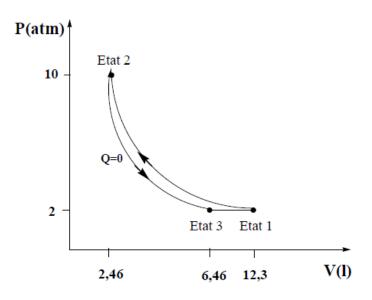
$$\Delta U = \gamma \Delta U = 1,8.847,66 = 1521,91 J$$

Exercice N°2:

$$\left\{ \begin{array}{l} P_1{=}\;2\;atm \\ T_1{=}\;300\;k \\ V_1{=}\;? \end{array} \right. \xrightarrow{\text{{\it Isotherme}}} \left\{ \begin{array}{l} P_2{=}\;10\;atm \\ T_2{=}\;300\;K \\ V_2{=}\;? \end{array} \right. \xrightarrow{\text{{\it Adiabatique}}} \left\{ \begin{array}{l} P_3{=}\;2\;atm \\ T_3{=}\;? \\ V_3{=}\;? \end{array} \right.$$

$$V_1 = \frac{nRT_1}{P_1} = \frac{1.0,082.300}{2} = 12,3 \ atm$$

$$V_2 = \frac{nRT_2}{P_2} = \frac{1.0,082.300}{10} = 2,46 atm$$


$$\gamma = \frac{C_p}{C_v} = \frac{12,48+8,31}{12,48} = 1,66$$

$$P_2V_2^{\gamma} = P_3V_3^{\gamma} \Rightarrow V_3^{\gamma} = \frac{P_2V_2^{\gamma}}{P_3} \Rightarrow V_3 = V_2(\frac{P_2}{P_3})^{\frac{1}{\gamma}} = 2,46 \ (\frac{10}{2})^{0.6} = 6,46$$

$$V_3 = 6,46 l$$

$$T_3 = \frac{P_3 V_3}{nR} = \frac{2 \cdot 6,46}{1 \cdot 0.082} = 158,63$$

$$T_3 = 158,63 K$$

Transformation isotherme:

$$\Delta U_1 = 0$$
 $\Delta H_1 = 0$
$$W_1 = -nRT \ln \frac{V_2}{V_1} = -8.31.300 \ln \frac{2.46}{12.3} = 4012.32 J = 4.012 KJ$$

$$Q_1 = -W_1 = -4.012 KJ$$

Transformation adiabatique:

$$Q_2 = 0$$

 $\Delta U_2 = W_2 = nC_v(T_3 - T_2) = 1.12,48(158,63 - 300) = -1764,3 J = -1,76 KJ$
 $\Delta H_2 = \gamma \Delta U_2 = 1,66.(-1764,3) = -2939,08 J = -2,94 KJ$

Transformation isobare:

$$W_3 = -P_3(V_1 - V_3) = -2(12, 3 - 6, 46) = -11,68 \ l. \ atm = -1168, 6 \ J = 1,18 \ KJ$$

$$\Delta U_3 = nC_v(T_1 - T_3) = 1.12,48(300 - 158,63) = 1764, 3 \ J = 1,76 \ KJ$$

$$\Delta H_3 = Q_3 = \gamma \Delta U_3 = 1,66.(1764,3) = 2939,08 \ J = 2,94 \ KJ$$

Pour le cycle :

$$\Delta U_T = \Delta U_1 + \Delta U_2 + \Delta U_3 = 0 - 1,76 + 1,76 = 0$$

$$\Delta H_T = \Delta H_1 + \Delta H_2 + \Delta H_3 = 0 - 2,94 + 2,94 = 0$$

$$W_T = W_1 + W_2 + W_3 = 4,012 - 1,76 - 1,18 = 1,072 \ KJ$$

$$Q_T = Q_1 + Q_2 + Q_3 = -4,012 + 0 + 2,94 = -1,072 \ KJ$$

Exercice N°3:

$$\begin{cases}
P_1 = 1 \text{ atm} \\
T_1 = 373 \text{ K}
\end{cases} \xrightarrow{\textbf{Isotherme}} \begin{cases}
P_1 = P_2 = 1 \text{ atm} \\
T_1 = T_2 = 373 \text{ K}
\end{cases} \xrightarrow{\textbf{Adiabatique}} \begin{cases}
P_3 = 0,25 \text{ atm} \\
T_3 = T_2 = 373 \text{ K}
\end{cases}$$

$$n = \frac{m}{M} = \frac{36}{18} = 2 \text{ mol}$$

$$Q_1 = \Delta H_1 = nL_{vap} = 2.9,76 = 19,52 \text{ KJ}$$

$$\Delta H_1 = \Delta U_1 + \Delta (PV) = \Delta U_1 + P(V_g - V_l) \Rightarrow \Delta U_1 = \Delta H_1 - P(V_g - V_l) car V_g > V_l$$

$$V_g = V_2 = \frac{nRT_2}{T_2} = \frac{2 \cdot 0,082 \cdot 373}{1} = 61,17 \ l$$

$$\Delta U_1 = 19520 - \frac{1.61,17.1,013.10^2}{1} = 19520 - 1482,42 = 18037,57 \, cal$$

$$= 18.04 \, Kcal$$

$$W_1 = -P(V_g - V_l) = -PV_g$$
 ou $W_1 = \Delta U_1 - Q_1$

$$W_1 = -1$$
 . 61, 17 = -61 , 17 l . $atm = -1482$, 42 $cal = -1$, 48 $Kcal$

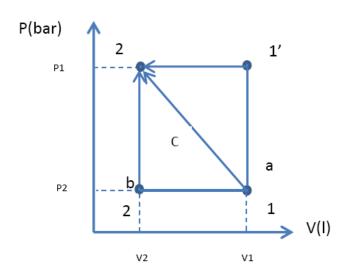
$$\Delta U_2 = 0$$
 $\Delta H_2 = 0$

$$W_2 = -nRT ln \frac{V_2}{V_1} = -nRT ln \frac{P_2}{P_1} = -2.8,31.373 ln \frac{1}{0,25} = -8593,99 \ cal$$

$$= -8.59 \ Kcal$$

$$Q_2 = -W_2 = -8,59 Kcal$$

$$\Delta U_T = \Delta U_1 + \Delta U_2 = \Delta U_1 = 18,04 Kcal$$


$$\Delta H_T = \Delta H_1 + \Delta H_2 = \Delta H_1 = 19,52 Kcal$$

$$W_T = W_1 + W_2 = -1,48 - 8,59 = 10,07 Kcal$$

$$Q_T = Q_1 + Q_2 = 19,52 + 8,59 = 28,11 Kcal$$

Exercice N°4:

1. P = f(V): Diagramme de Clapeyron

2. Calculer ΔU ?

ΔU : ne dépend pas du chemin suivi car c'est une fonction d'état ;

donc: $\Delta U = \Delta Q = nC_D\Delta T = 0$ (selon le chemin C ou la transformation est isotherme)

3/ Calculer les travaux au cours des trois chemins (a, b et c) :

• Pour le chemin (a):

$$Wa = W_{II'} + W_{I'2} = -P_2(V_2 - V_{I'})$$

 $W_{II'} = 0$ (isochore) et $W_{I'2}$ (isobare)

$$Wa = -P_2(V_2-V_{1'}) = -P_2(V_2-V_1) = P_2(V_1-V_2) \implies Wa = 3.10^5 (3-1)10^{-3} = 600 J$$

• Pour le chemin (b):

$$Wb = W_{12'} + W_{2'2} = -P_1(V_{2'}-V_1)$$

 $W_{2'2} = 0$ (isochore)

$$Wb = -P_1(V_2 - V_1) = -P_1(V_2 - V_1) = P_1(V_1 - V_2) \implies Wa = 10^5 (3-1)10^{-3} = 600 J$$

• Pour le chemin (c) :

$$W_c = -\int_1^2 P \ dV = -\int_1^2 n \ R \ T \ \frac{dV}{V} = n \ R \ T \ ln \frac{V_1}{V_2} = P_1 V_1 ln \frac{V_1}{V_2}$$

$$\Rightarrow Wc = 10^5 \ 3.10^{-3} \ \ln 3 = 327 \ J$$

Les quantités de chaleur pour les chemins a, b et c :

Puisque : $\Delta U = 0$ donc ; W = -Q

et: Qa = -600 J < 0; Qb = -200 J < 0; Qc = -327 J < 0; c'est des chaleurs perdues.

Remarque:

D'après cet exercice, on prouve qu'effectivement la variation de l'énergie interne est une fonction d'état qui ne dépend que de l'état initial et l'état final, par contre le travail et la quantité de chaleur ne sont pas des fonctions d'état qui dépend réellement du chemin suivi.

5. Thermochimie

5.1. Enthalpie de réaction :

Le fondement de la thermochimie est l'équation Qp=ΔH, qui fournit une fonction d'état mesurable expérimentalement, reliée à l'énergie du système. Elle étudie la capacité qu'ont les molécules d'emmagasiner de l'énergie et de l'échanger avec d'autres molécules dans les processus physiques, ainsi que la production ou l'absorption d'énergie au cours des réactions physiques et chimiques.

5.2. Enthalpie standard de réaction :

La grandeur thermodynamique ΔH est donnée dans différentes tables dans les conditions standards c.à.d. à 25 C°, T=298 k et P=1 atm.

On notera ainsi : variation d'enthalpie standard (ΔH°)

Il s'agit d'une énergie don son unité est en : J.mol⁻¹ ou Cal.mol⁻¹

Le tableau ci-dessous récapitule les enthalpies de formation de quelques composés dans un état physique donné et à l'état standard.

Réactif	Composé	ΔH_f^0 (Kcal/mol)
$H_2(g) + \frac{1}{2} O_2(g)$	$H_2O(g)$	- 57,80
$H_2(g) + \frac{1}{2} O_2(g)$	H ₂ O(l)	- 68,30
$C(gr) + O_2(g)$	CO ₂ (g)	- 94,05
$C(gr) + \frac{1}{2} O_2(g)$	CO(g)	- 26,42
$C(gr) + 2H_2(g)$	CH ₄ (g)	- 17,89
$2C(gr) + 2H_2(g)$	$C_2H_4(g)$	12,50
$2C(gr) + 3H_2(g)$	C ₂ H ₆ (g)	- 24,82

5.3. Variations des chaleurs de réaction avec la température :

Soit la réaction : Réactifs → Produits

Maintenant que nous avons dans des tables ΔH° c.à.d. à l'enthalpie à 25 C° on peut alors calculer cette variation d'enthalpie à une autre température selon la loi suivante :

Loi de Kirchhoff (Kirchhoff, 1959)

$$\frac{d\Delta_r H_{(T)}}{dT} = \Delta C_p$$

$$\Delta_r H_{T_2} - \Delta_r H_{T_1} = \int_{T_1}^{T_2} \Delta C_p dT$$

$$\frac{d\Delta H_{(r\'{e}action)}}{dT} = \Delta C_p$$

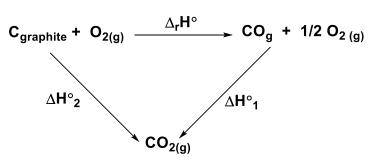
ΔC_p: variation des capacités calorifiques sont fonction de T

$$Cp = a + bT + CT^2 + \dots$$

$$\Delta C_p = \sum \gamma_i C_{p(produits)} - \sum \gamma_j C_{p(r\'{e}actifs)}$$

 γ_{i} et γ_{i} : coefficients stœchiométriques des réactifs et des produits.

5.3.1. Calcul des chaleurs de réaction :


De nombreuses chaleurs de réactions ne peuvent être mesurées par calorimétrie. On utilise pour cela toujours le principe de l'état initial et de l'état final pour les calculer indirectement. <u>Exercice d'application</u>: Calculer l'enthalpie de la réaction suivante:

$$C_{graphite} + \frac{1}{2} O_{2(g)} \xrightarrow{\Delta_r H^{\circ}} CO_{(g)}$$

Sachant que:

1/
$$CO_{(g)} + \frac{1}{2}O_{2(g)} \rightarrow CO_{2(g)}$$
 $\Delta H_1^{\circ} = -282.6 \text{ KJ}$
2/ $C_{graphite} + O_{2(g)} \rightarrow CO_{2(g)}$ $\Delta H_2^{\circ} = -395 \text{ KJ}$

Solution:

Page 97

$$\sum \Delta H_i = 0$$

$$\Delta_r H^{\circ} + \Delta H^{\circ}_1 - \Delta H^{\circ}_2 = 0.$$

$$\Delta_{\rm r} {\rm H}^{\circ} = \Delta {\rm H}^{\circ}_{2} - \Delta {\rm H}^{\circ}_{1} = -395 + 282,6.$$

$$\Delta_{\rm r} {\rm H}^{\circ} = -112,4$$
 KJ.

5.3.2. Calcul des chaleurs de réactions à partir des enthalpies de formation :

Loi de HESS

Soit Réactifs
$$\xrightarrow{\Delta_r H^{\circ}}$$
 Produits

$$\Delta H_{r\acute{e}action}^{\circ} = \sum \Delta H_{f(Produits)}^{\circ} \ - \ \sum \Delta H_{f(R\acute{e}actifs)}^{\circ}$$

f: formation

Dans le cas d'une réaction du type : $aA + bB \rightarrow cC + dD$

La formule s'écrit alors :

$$\Delta H_{r\acute{e}action}^{\circ} = \left[c \Delta H_{f}^{\circ}(C) + d \Delta H_{f}^{\circ}(D) \right] - \left[a \Delta H_{f}^{\circ}(A) + b \Delta H_{f}^{\circ}(B) \right]$$

Ou, a, b, c, d sont les coefficients stœchiométriques des réactifs et des produits.

Remarque : on notera que l'enthalpie de formation standard d'un corps simple est égale à zéro.

5.3.3. Calcul des énergies de liaisons :

C'est la variation d'enthalpie nécessaire pour effectuer la transformation.

$$A + B \rightarrow A-B$$

A l'inverse l'énergie de dissociation correspond à : $A-B \rightarrow A + B$

 $\underline{Exemple}: Soit \ la \ réaction: \ 2 \ H_{(g)} \ + \ O_{(g)} \ \longrightarrow \ H_2O_{(g)} \ (\Delta H^\circ_r)$

 $\Delta H^{\circ}_{r} = -926 \text{ KJ}$

Dans H₂O il y a deux liaisons OH

D'où l'énergie de la liaison O-H : $E_{l(OH)} = \Delta H^{\circ}_{r}/2 = -926/2 = -463 \text{ KJ}.$

5.3.4. Liaison ionique, énergie réticulaire (cycle de Born-Haber) :

C'est l'énergie d'une mole d'un corps à l'état de cristal ionique à partir des ions pris à l'état gazeux à 298 K sous 1 atm (conditions standard), c'est l'énergie d'un réseau ionique.

Exemple d'application:

$$Na^+_{(g)} + Cl^-_{(g)} \rightarrow (Na^+ Cl^-)_{solide}, \Delta H^\circ_{r(Na+Cl-)} = ?.$$

On connait les enthalpies des réactions suivantes :

Ionisations des éléments :
$$Na_{(g)} \rightarrow Na_{(g)}^+ + 1 e^-$$
, $\Delta H^{\circ}_1 = 118 \text{ Kcal}$

$$\text{Cl}_{(g)} + 1 \text{ e-} \rightarrow \text{Cl}_{(g)}$$
 , $\Delta \text{H}_2^{\circ} = -86 \text{ Kcal.}$

Passage des éléments de l'état atomique et gazeux à l'état standard à 298 K:

$$Na_{(g)} \rightarrow Na_{(s)}$$
 , $\Delta H^{\circ}{}_{3} =$ -26 Kcal

$$Cl_{(g)} \rightarrow 1/_2Cl_{2(g)}$$
 , $\Delta H^{\circ}_4 = -29$ Kcal.

Formation de NaCl à 298 K: Na $_{(s)}$ + $1/_2$ Cl $_{2(g)}$ \rightarrow NaCl $_{solide}$ ΔH°_{5} = -98 Kcal.

Solution:

$$Na^{+}_{(g)} + CI^{-}_{(g)} \xrightarrow{\Delta_{r}H^{\circ}} Na CI_{(solide)}$$

$$-\Delta H^{\circ}_{1} - \Delta H^{\circ}_{2} \qquad \qquad \Delta H^{\circ}_{5}$$

$$Na_{(g)} + CI_{(g)} \xrightarrow{} Na_{(s)} + 1/2CI_{2(g)}$$

$$+\Delta H^{\circ}_{3} + \Delta H^{\circ}_{4}$$

$$\sum \Delta H_i = 0$$

$$\Delta_r H^{\circ} - \Delta H^{\circ}_5 - \Delta H^{\circ}_3 - \Delta H^{\circ}_4 + \Delta H^{\circ}_2 + \Delta H^{\circ}_1 = 0.$$

$$\Delta_r H^{\circ} = -\Delta H^{\circ}_1 - \Delta H^{\circ}_2 + \Delta H^{\circ}_5 + \Delta H^{\circ}_3 + \Delta H^{\circ}_4$$

$$\Delta_{\rm r} {\rm H}^{\circ} = -118 + 86 - 26 - 29 - 98 \implies \Delta_{\rm r} {\rm H}^{\circ} = -185 \text{ KJ}.$$

5.4. Second principe de la thermodynamique :

Un système isolé qui a subit une évolution ne peut revenir à son état initial (principe de retour de l'ensemble de l'univers à son état initial ne peut exister). Il n'existe pas de machine qui peut faire ramener l'univers à son état initial.

Imaginons maintenant une machine thermique (exemple : atmosphère, gaz de combustion, moteur à explosion,...).

Du 1^{ère} principe on peut écrire : $W + Q_1 + Q_2 = 0$.

Q₁ : est l'énergie reçue et Q₂ : est l'énergie cédée.

Pour tout cycle réel on écrit :

$$\frac{Q_1}{T_1} + \frac{Q_2}{T_2} < 0$$

T₁ et T₂ sont les absolues des deux sources de chaleurs reçue et cédée.

$$\sum \frac{Q_i}{T_i} < 0$$

Pour un cycle réversible (exemple cycle de Carnot) on aura :

$$\frac{Q_1}{T_1} + \frac{Q_2}{T_2} = 0$$

Pour n cycle on aura:

$$\sum \frac{Q_i}{T_i} = 0$$

Pour un système isolé $\Delta S \ge 0$:

Attention à l'unité : S est en J.K-1

L'entropie d'un système isolé ne peut qu'augmenter.

5.4.1. Expression de l'entropie :

a. Notion d'entropie

La matière est plus au moins ordonnée ; cela signifie que les atomes, les ions et les molécules qui la constituent sont disposés de façon plus ou moins régulière, plus ou moins anarchique.

Un solide cristallisé présente une structure ordonnée alors qu'un liquide a une structure désordonnée.

Pour « mesurer) ce désordre les thermodynamiciens introduisent une notion qui apparemment, en est éloignée, celle de **l'entropie**.

 $\Delta_r S$: renseigne sur l'organisation/désorganisation associée à une réaction.

 $\Delta_r S < 0$: la réaction chimique conduit à une organisation de système.

 $\Delta_r S > 0$: la réaction chimique conduit à une désorganisation de système.

Définition : on dira que la variation d'entropie du système lors de l'échange de chaleur est :

$$\Delta S = \frac{\Delta Q}{T}$$

$$\Delta S = O/T$$

 ΔS s'exprime en (J/K) ou bien pour une mole ΔS (J/mol K).

Dans le 1ere principe de la thermodynamique on a : U = W + Q d'où Q = U - W

D'où:

$$\frac{\Delta Q}{T} = \frac{\Delta U - \Delta W}{T} = \Delta S$$

$$\Delta U = T\Delta S + \Delta W = T\Delta S - P\Delta V$$

Avec:

$$\Delta W = \int -P_{ext} dV = -P \Delta V$$

Or:
$$H = U + PV$$
 donc, $\Delta H = \Delta U + \Delta (PV) = T \Delta S - P \Delta V + P \Delta V = T \Delta S + V \Delta P$

$$\Delta H = T \Delta S + V \Delta P$$

$$\Delta U = T \Delta S - P \Delta V$$

b. Variation de l'entropie avec la température

Une augmentation de la température favorise le désordre donc S augmente avec la température.

$$dS = C_p \ \frac{dT}{T}$$

Par intégration:

$$S(T_1) - S(T_2) = C_p Ln \frac{T_2}{T_1}$$

Si C_p est indépendant de T

A Pression constante (isobare):

$$\Delta S = C_p \ Ln \frac{T_2}{T_1}$$

Pour n moles à Pression constante :

$$\Delta S = nC_p \ Ln \frac{T_2}{T_1}$$

A Volume constant (isochore):

$$\Delta S = C_v Ln \frac{T_2}{T_1}$$

Pour n moles à Volume constant :

$$\Delta S = nC_v Ln \frac{T_2}{T_1}$$

c. Variation d'entropie lors d'une réaction chimique

L'entropie de tout corps pur sous sa forme la plus stable est nulle au zéro absolue ($S_{0K} = 0$)

$$\Delta S = \sum \Delta S^{\circ}_{(produits)} - \sum \Delta S^{\circ}_{(r\acute{e}actits)}$$

$$\Delta S_{T_2}^{\circ} - \Delta S_{T_1}^{\circ} = \sum C_{p(final)} - \sum C_{p(initial)} Ln \frac{T_{final}}{T_{initial}}$$

5.4.2. Expression de l'énergie libre et de l'enthalpie libre :

a. Enthalpie libre d'un système

On appelle énergie libre ou fonction de Helmholtz, la fonction d'état notée F, définie par la relation : F = U-TS

Pour un processus réversible et isotherme : de l'état initial i à l'état final f :

$$\Delta U \; = \; U_f \; \text{-} \; U_i = W + Q \;\; \Rightarrow \;\; W = \Delta U \text{-} \; Q$$

D'autre part, on a : $\Delta S = S_f - S_i = QT \Rightarrow Q = T \Delta S = T (S_f - S_i)$.

Alors:
$$W = \Delta U - Q = \Delta U - T \Delta S = U_f - U_i - T (S_f - S_i) \Rightarrow W = (U_f - T S_f) - (U_i - T S_i)$$

Et comme : F = U-TS $\Rightarrow W = F_f - F_i = \Delta F$.

 ΔF = Représente le travail qui peut céder un système au milieu extérieur.

b. Enthalpie libre d'un système

Une nouvelle fonction d'état, l'enthalpie libre (G, appelée énergie libre de Gibss) représentée pour des réactions chimiques se produisant à la suite de chocs entre molécules de réactifs.

G = H - TS

 $\Delta G = \Delta H - TS$

$$\Delta G^{\circ} = \sum \Delta G_{(des \, produits)} - \sum \Delta G_{(des \, réactifs)}$$

L'entropie libre des corps simple est nulle.

Si $\Delta G < 0$: la réaction peut se faire, elle est favorisée, la réaction est dite **exergonique**.

Si $\Delta G = 0$, on peut avoir la réaction dans le sens 1 ou 2, les réactifs et les produits sont en équilibre.

Si $\Delta G > 0$, la réaction se fera dans le sens 2, la réaction est dite **endergonique**.

L'enthalpie libre des corps simples est nulle

Pour une réaction $aA + bB \rightleftharpoons cC + dD$

$$\Delta G = \Delta G^{\circ} + RT \ Ln \ K_{p}$$

$$\Delta G = \Delta G^{\circ} + RT \ Ln \ K_{c}$$

$$K_p = \frac{P_C^c p_D^d}{P_A^a P_B^b}$$

$$K_c = \frac{[C]^c [D]^d}{[A]^a [B]^b}$$

c. Relation entre F et G:

$$F = U - TS....(1)$$

$$G = H - TS....(2)$$

$$H = U - TS....(3)$$

En remplaçant H par (U+PV) dans l'expression (2), on aura :

$$G = U + PV - TS$$
, et comme $F = U - TS$

Alors :
$$G = PV + F$$

Exercices

Exercice N°1:

Calculer la chaleur de combustion ΔH°_{r} de l'acide oxalique solide $(C_{2}H_{2}O_{4})_{s}$ à 25 °Cet la pression atmosphérique, en utilisant les enthalpies molaires standards de formation. <u>Sachant</u> $\underline{que}: \Delta H^{\circ}_{f(C2H2O4)s} = -1822,2 \text{ kJ.mol}^{-1}. \Delta H^{\circ}_{f(CO2)g} = -393 \text{ kJ.mol}^{-1}., \Delta H^{\circ}_{f(H2O)l} = -285.2 \text{ kJ.mol}^{-1}.$

La réaction est-elle endo- ou exothermique ?

Exercice N°2:

Déterminer l'énergie de la liaison O-H dans la molécule d'eau à l'état gazeux.

On donne:

1/ H(g) + H(g)
$$\rightarrow$$
 H₂(g) Δ H°₁= - 436 kJ
2/ O(g) + O(g) \rightarrow O₂(g) Δ H°₂= - 495 kJ
3/ H₂(g) + 1/2O₂(g) \rightarrow H₂O(g) Δ H°₃= - 242 kJ

Exercice N°3:

Calculer l'enthalpie standard ΔH°_r de la réaction suivante à 25 °C

$$CO(g)$$
 + $3H_2(g)$ \rightarrow $CH_4(g)$ + $H_2O(g)$

- 1. En déduire la valeur de l'énergie interne ΔU_r° de la même réaction.
- 2. Cette réaction est-elle endothermique ou exothermique ?

On donne des enthalpies standards des réactions de combustion ΔH°_{r} de CO, de H_{2} et de CH_{4} :

Solutions

Exercice N°1:

$$C_2H_2O_{4(s)} + 1/2O_{2(g)} \rightarrow 2CO_{2(g)} + H_2O(g)$$

Loi the Hess

$$\Delta H_r^0 = \sum Coef.Stoechio \Delta H_{f(produits)}^0 - \sum Coef.Stoechio \Delta H_{f(reactif)}^0$$

$$= \left(2\Delta H_{f(CO2)}^0 + \Delta H_{f(H2O)}^0\right) - \left(\Delta H_{f(C2H2O4)}^0 + \frac{1}{2}\Delta H_{f(CO2)}^0\right)$$

$$\Delta H_{f(CO2)}^0 = 0 \ (Corps \ simple)$$

$$\Rightarrow \Delta H_r^0 = 2(-392.9) + (-284.2) - (-1822.2)$$

$$\Delta H_r^0 = 752.2 \ KI$$

La réaction est endothermique: $\Delta H_r^0 > 0$

Exercice N°2:

$$2H_{(g)} + O_{(g)} \xrightarrow{\Delta H_{r}^{\circ}} H_{2}O_{(g)}$$

$$\Delta H^{\circ}_{2} + 1/2\Delta H^{\circ}_{2}$$

$$H_{2(g)} + 1/2O_{2(g)}$$

$$\sum \Delta H_i^0 = 0 \implies (\Delta H_r^0 - \Delta H_3^0) - \left(\Delta H_1^0 - \frac{1}{2}\Delta H_2^0\right) = 0$$

$$\Delta H_r^0 = \Delta H_3^0 + \Delta H_1^0 + \frac{1}{2} \Delta H_2^0$$

$$\Delta H_r^0 = -242 - 436 + \frac{1}{2}(495) = -925,5$$

$$\Delta H_r^0 = -925,5 \, KJ$$

Or dans H_2O on a 2 liaisons $O-H \Rightarrow$

$$\Delta H_{(O-H)}^0 = \Delta H_{l(O-H)}^0 = \frac{\Delta H_r^0}{2} = \frac{-926}{2} = -463 \text{ KJ}$$

 E_l : Energie de liaison.

Exercice N°3:

1. L'énergie interne :

$$\Delta U_r^0 = \Delta H_r^0 - RT\Delta n$$

Cherchons ΔU_r^0 par la méthode algébrique (Somme).

$$CO_{(g)} + 1/2O_{2(g)} \rightarrow CO_{2(g)}$$
 ΔH_1^0
 $H_{2(g)} + 1/2O_{2(g)} \rightarrow H_2O_{(g)}$ $3\Delta H_2^0$
 $CO_2 + 2 H_2O \rightarrow CH_4 + 2O_2$ $-\Delta H_3^0$

$$CO_{(g)} + \frac{1}{2}O_{2(g)} + \frac{3}{4}H_{2(g)} + \frac{3}{2}O_{2(g)} + CO_{2} + \frac{2}{4}H_{2}O \\ \longrightarrow CO_{2(g)} + \frac{3}{4}H_{2}O_{(g)} + CH_{4} + 2O_{2(g)} + \frac{3}{4}H_{2}O_{2(g)} + \frac{3}{4}H_{2$$

$$CO_{(g)} + + 3H_{2(g)} \rightarrow CH_4 + H_2O_{(g)} (\Delta H_1^0 + 3\Delta H_2^0 - \Delta H_3^0)$$

$$\Delta H_r^0 = \Delta H_1^0 + 3\Delta H_2^0 - \Delta H_3^0$$

$$\Delta H_r^0 = 205,2 \, KJ$$

$$\Delta n = \sum \textit{Coef.Stoechio produits gazeux} - \sum \textit{Coef.Stoechio réactifs gazeux}$$

$$\Delta n = (1+1) - (3=1) = -2$$

Or:

$$\Delta \boldsymbol{U_r^0} = \Delta H_r^0 - RT\Delta n$$

A.N:

$$\Delta U_r^0 = 205.2 + 2(8.31 \ 10^{-3})(298) = -200.25 \ KJ$$

2. La réaction est exothermique car $\Delta U_r^0 < 0$

Références:

- [1] Elisabeth Bardez, « Mini Manuel de Chimie générale : Chimie des Solutions ». Ed. Dunod, Paris, 256 p, 2014.
- [2] Paul-Louis Fabre, « Chimie des solutions. Résumés de cours et exercices corrigés » ^{3ème} Ed, 2017.
- [3] R. Chang, « Chimie des solutions », 3 éd., Éditions Chenelière/McGraw, 2009.
- [4] E. Flamand, J.-L. Allard, « Chimie des solutions », ^{2ème} Ed., Mont-Royal, 2003.
- [5] John C. Kotz et Paul M. Treichel, « Chimie des solutions ». Ed. De Boeck, 376p, 2006.
- [6] René Gaborriaud et al. « Thermodynamique appliquée à la chimie des solutions ». Ed. Ellipses, 335p, 1988.