Mohamed Khider University of Biskra

1st year LMD SNV **Subject: Chemistry 2**

Practical Work No. 1:

pH-metric dosage (Dosage of a weak acid with a strong base)

1- Reminder:

• The self-containment of water and pH: It results in the following equilibrium:

$$2H_2O \rightleftharpoons H_3O^+ + OH^-$$

• The law of mass action: $K_c(T) = \frac{1}{[H_2O]^2}$

 $[H_3O^+][OH^-] = K_c [H_2O]^2 = K_e/K_e$: The ionic product of water.

At 25° C: $[H_3O^+][OH^-] = 10^{-14} \text{ mol.l}^{-1}$

The medium is acidic: $[H_3O^+] > 10^{-7} \text{ mol.l}^{-1}$

ightharpoonup The medium is neutral: $[H_3O^+] = 10^{-7} \text{ mol.l}^{-1}$

 $[H_3O^+] < 10^{-7} \text{ mol.}1^{-1}$ ➤ The medium is basic:

The concentration limit between an acidic medium and a basic medium is anextremely small number $[H_3O^+] = 10^{-7} = 0.0000001 \text{ mol.l}^{-1}$

Generally speaking, [H₃O⁺] is expressed by negative powers of 10, such numbers are notconvenient & handle. They should be transformed using a mathematical operation that simplifies writing. Each concentration is characterized by its negative decimal logarithm (cologarithm = 1/log).

 $pH = colog [H_3O^+] = -log [H_3O^+]$ We pose:

 $pOH = colog [OH^-] = -log [OH^-]$

pK = cologt K = -log K

<u>Example</u>: $[H_3O^+] = 10^{-x} \text{ mol/l} \Rightarrow \log [H_3O^+] = \log 10^{-x} = 10^{-pH} \Rightarrow pH = x(x>0)$

• pH of a strong monoacid:

A concentration C_a of strong acid HA is introduced into the water.

The dissociation is total: $HA + H_2O \rightarrow H_3O^+ + A^-$

$$pH = -log [H_3O^+] = log C_a$$

Academic year: 2023/2024

• pH of a weak monoacid:

This time the dissociation reactions are equilibrium: $HA + H_2O \rightleftharpoons H_3O^+ + A$ Three equations will allow us to calculate the pH:

• Law of mass action:
$$K = \frac{[H_2O^+][A^-]}{[HA] [H_2O]} \Rightarrow K_a = \frac{[H_2O^+][A^-]}{[HA]}$$
(1)

- Electrical neutrality of the solution: In dissociation forms as many positive charges as charges negative. Neglecting the self-ionization of water, we have $[H_3O^+] = [A^-]$(2)
- Conservation of A during the dissociation: $C_a = [HA] + [A^-]$(3) Equation (3) simplifies. In fact, the weak acid is very little dissociated. We neglect [A-] in front of

We obtain the equation: $C_a = [HA]$ (4)

We enter into equation (1) the results (2) and (4)

$$K_{a} = \frac{[H_{2}O^{+}][A]}{C_{a}} \Rightarrow [H_{3}O^{+}] = (K_{a}C_{a})^{1/2} \Rightarrow -\log[H_{3}O^{+}] = \frac{1}{2}(-\log K_{a} - \log C_{a})$$

And

$$pH = 1/2(pK_a - logC_a)$$

• Colored indicators: A colored indicator is an acid-base pair whose acid form and basic form have different colors

Let K_i be the mass action constant of the equilibrium between the two forms:

$$HIn+\ H_2O\ \rightleftharpoons\ In^{\text{-}}+H_3O^{\text{+}} \qquad \quad K_i=\ \frac{[H_2O^{\text{+}}][In^{\text{-}}]}{[HIn]}$$

The first color is observed when: $[H_3O^+] \ge 10K_i$. either: $pH \le pK_i - 1$ The second color is observed when: $[H_3O^+] \le K_i/10$ either: $pH \ge pK_i + 1$

Example: Helianthin $(pK_i = 3.4)$

➤ First color:red when $pH \le pK_i - 1 \Rightarrow pH \le 2.4$ ➤ Second color:yellow when $pH \ge pK_i + 1 \Rightarrow pH \ge 4.4$

2- Objectives:

- How to do the calibration?
- Determination of the concentration of ethanolic acid (CH₃COOH) by pH-metric assay.

3- Materials:

• pH-metric + electrode, stirrer, magnetic rod, graduated cylinder (150 ml), beaker (250 ml), graduated burette, funnel, volumetric pipette (10 ml).

4- Products:

• Buffer solutions (pH = 7, pH = 4 or pH = 10), Ethanol acid solution (CH₃COOH), Sodium hydroxide solution (NaOH) 0.1 mol/l. colored indicator and distilled water.

5- Operating Mode:

- Prepare the pH meter (calibration) using the buffer solutions.
- Refill the burette with the basic solution (NaOH).
- Using a pipette, take 10ml of CH₃COOH then add it to the graduated cylinder.
- Make up with distilled water to 150ml.
- Pour this volume into a beaker (250ml).
- Immerse the electrode and the magnetic bar in the acid solution then start stirring.
- Note the pH₀ value (initial pH).
- Add 2 to 3 drops of the colored indicator.
- Add 1ml each time and note the pH
 - ✓ **Note:** In the toning area (pour the basic solution drop by drop).
 - ✓ **Data:** Table of some colored indicators,

Indicator	turning area	First color (color in acidic	Second color (color in the
		environment) (HA)	basic environment) (A ⁻)
Helianthin (Methyl's orange)	2.4 - 4.4	Red	Yellow
Methyl red	4,1-6.1	Red	Yellow
Bromothymol blue	6.6 - 7.6	Yellow	Red
Phenolphthalein	8.2 - 10.2	colorless	Red