

Mohammad Kheider University of Biskra
Faculty of Exact Sciences and Natural and Life Sciences
Computer Science department

Master 1 course Option: RTIC

QUALITY OF SERVICE (QOS)

By: Dr. Boukhlouf

2023/2024

Course Map

- Multimedia communicating systems
 - Principles and architectures
 - Streaming systems and ToIP
 - RTP/RTCP, SIP, RTSP protocols
- Quality of service
 - Principles and mechanisms
 - Classification, scheduling, queue management, congestion control, admission control, routing with QoS
 - Protocols IntServ, DiffServ

1. Multimedia communicating systems

Definitions

- Multi: Indicates multiple
- Multimedia (computing): presentation of an application (generally interactive) which integrates elements such as text, graphics, video, sound.
- Media: means/support for the dissemination, distribution or transmission of signals carrying written, sound, visual messages (press, cinema, radio, TV, etc.)
- Multimedia system: Computer and associated software used to run a multimedia application.
- Distributed multimedia system: an SMD that operates on a set of equipment interconnected by a communication network.

Concepts related to Multimedia

Wired equipment for Multimedia

Wireless and mobile equipment for the *Multimedia*

General principle of distributed multimedia applications

Classification of multimedia applications

According to the interactivity

- Non-interactive: radio and TV, video on demand, e-learning...
- Interactive: video surveillance, remote control, video conference call,telemedecine,teleshopping,games...

According to the criticality

- (Very) critical: guidance and supervision, telesurgical operation...
- Average criticality : video conference, stock market, teleshopping
- Non-critical: TV, radio, games...

• According to the timings (real time)

- -Sstreaming of previously stored audio/video data
- -Real-time 1-to-m streaming of audio-video data
- Interactive audio/video applications

Evolution of Internet traffic

Digitization and compression

- Audio/video support not necessarily digital
- Digitize content
- Scanned data may be large in size
- Compress
- Codecs
- Compression/Decompression
- Choice of codec often imposed by network bandwidth
- Lossless compression
- Lossy compression

Principles

Audio digitisation

- Pulse Code Modulation PCM
- Compression techniques
- Voice
 - GSM (13 kb/s), G.729 (8 kb/s), G.723 (6.4 and 5.3 kb/s)
 - proprietary techniques
- CD quality music
 - MP3
 - 96, 128 and 160 kbps
 - splitting into independent files
 - Streaming
- Others: AAFC, Vorbis, ...

Video digitization

- Video
- Sequence of images viewed at a certain bit rate
- Picture
- Suite of pixels
- pixels
- Luminance and color
- Encoded in a number of bits

Video compression

- Redundancies
 - Spatial redundancy
 - Temporal redundancy
- MPEG compression standards
 - MPEG 1 CD-ROM video quality 1.5 Mb/s
 - MPEG 2 high quality DVD video Digital TV –
 3-6 Mb/s
 - MPEG 4 tt type of multimedia applications
 - Inspired by the JPEG standard
- Other standards
 - H.261, 262, 263, 264
 - Owners

Audio/video streaming

- Definitions
- Play an audio/video stream as it is broadcast
 - No need to have downloaded the whole file
 - The download continues in the background
 - Temporary data storage
 - Alternative to download
- Stored
 - The requested file is previously stored on a server
 - -eg. video on demand
- Real time / live
 - Similarity to broadcast radio/television
 - Real-time content processing and delivery

Audio/video streaming

 The "media" client softwareplayer» puts the data in a buffer, and then plays it

Telephony over IP :ToIP

- <u>Differences betweenVoIPand theToIP</u>
- Voice over IP
- Transmit an audio signal in the IP world
- Telephony over IP
- Application of the VoIP
- Telephone functions and services around the VoIP
- which allow telephony
- IP telephony architecture

Differences between VoIP and the ToIP

Benefits of ToIP

- Users
- Cost
- Long distances
- Flexibility
- IP phone mobility
- Physical and material mobility
- Operators
- No strong regulation
- Management of a single network
- Voice data
- Cost
- 60% of thebpallocated to a voice circuit (PSTN) not used

VOIP protocols

The main protocols used for establishing connections invoice over IP are:

Equipment forToIP

- Telephones
- -Softphones
- Software to be installed on a system computer science
- -Hardphones
- Conventional telephones with a socket ethernet
- Configuration files

Equipment forToIP

- PBXs
- IP-PBX (PABX –Private Automatic Branch exchange)

Management and interconnection

post offices

- Provision of services telephone
- Hardware / software

Principle of IP telephony

- Telephone communication: talk, silence, talk...
- Normally: it takes 64 kb/s during the speech phase
- Packets are generated only during speech phases
- Message = a piece of speech (of 160 bytes of data) + header
- Each message is encapsulated in a UDP segment.
- The application sends UDP segments via the UDP-socket every 20 ms during the speech phases. The sending rate is 8 kb/s.
- Up to 10% (or even 20%) packet loss is tolerable.
- Packets with a delay greater than 400 ms are discarded upon receipt.
- Jitter is managed by using packet timestamps, sequence numbers, and by delaying certain packets before they are listened to by the receiver.

Packet Loss Recovery

- As retransmissions are inappropriate in a real-time context, an overlay strategy must be put in place. In the case of IP telephony, two techniques are used to reduce the impact of losses: FEC (Forward errorcorrection) and Interlacing.
- Recovery by FEC: Add redundancy information by mixing the values of several pieces in a packet.

Recovery by FEC

Overlapping by interlacing

- No redundancy, but it may cause delays in the playout.
- Divide 20 msec periods of speech into smaller 5 ms periods and interleave the smaller chunks
- If lost, use incomplete pieces (rather than losing large whole pieces).

Overlapping by interlacing

Characteristics of multimedia applications

- Handling large amounts of 'continuous' data
- Minimum flow rates are required
- Delivery of information respecting timings
- Interactive applications require low round trip times
- Coexistence (and resource sharing) with non-media applications
- Resources required:
- Processors (high performance)
- Powerful servers
- Dedicated main memory (for buffering by the customer)
- Large capacity disk memory
- Network bandwidth with minimal latency

Multimedia application requirements

- Requirements: delay, jitter, throughput
- The required values change with the evolution of the technological offer:
- We do not ask the same things for a 56 kb/s Internet connection as for a 10 Mb/s connection.
- The (human) user knows both how to be demanding and how to adapt to what is offered to him.
- Current demand trend: ever shorter lead times, ever higher throughputs, ever lower loss rates.

Multimedia application requirements

■ Telephony and audio conferencing

- Low throughput (~ 64 Kb/s), but delays should be short (< 250 ms)
- Video on demand
- High throughput (~10 Mb/s), non-critical latency

Video conferencing

 High throughput for each participant (~1.5 Mb/s), low delay (< 100 ms), synchronized states.

Distributed music rehearsal

 High throughput (~1.4 Mb/s), very low latency (< 100 ms), high media synchronization (drift between sound and image < 50 ms)

■ Games

- A maximum delay of 70 ms is more appreciated by gamers than a delay of 200 ms.
- The jitter should be 20 ms maximum, because the player adapts his strategy to a fixed delay (by shooting the targets for example). High jitter leads to boring gameplay.

Protocols for data transport multimedia Real-Time Protocol (RTP) (1/3)

- RTP: a solution for AMMs with Internet in best effort
- Basically works on top of UDP

Real-Time Protocol (RTP) (2/3)

Type de flux Numéro de séquence Estampille Identificateur de source de synchronisation Données

RTP packet header

- Type of stream (7 bits)
- Sequence number (16 bits): used to detect losses.
- Timestamp (32 bits): Provides the sampling instant of the first byte of the packet.

It is used to absorb jitter.

Sync Source Identifier (32 bits): identifies the source of the stream.

Each stream in RTP has a source-assigned identifier randomly (but distinct from those that already exist) at the start of the stream.

Real-Time Protocol (RTP)(3/3)

Some types of audio streams supported by RTP

Stream type	A <mark>udio</mark> Format	Sampling	Rate
0	PCM	8 KHz	64 Kb/s
1	1016	8 KHz	4.8 Kb/s
3	GSM	8 KHz	13 Kb/s
7	LPC	8 KHz	2.4 Kb/s
9	G.722	8 KHz	48-64 K/ps
14	MPEG Audio	90 KHz	
15	G.728	8 KHz	16 Kb/s

Some types of video streams supported by RTP

Stream type	V <mark>ideo Format</mark>
26	Motion JPEG
31	H.261
32	MPEG1 Video
33	MPEG2 Video

Real-Time Control Protocol (RTCP)(1/2)

- RTCP is used to route packets containing reports about a media stream between a source and a receiver.
- Reports contain statistics on: number of packets transmitted, number of packets lost, transfer jitter, etc.
- Report packets are sent by receivers, possibly at the request of sources.
- Report packets are used by the source to modify/adapt its timing to network conditions.

Real-Time Control Protocol (RTCP) (2/2)

- If each receiver sends its report packets to all the other sources/receivers of the stream: significant network overload.
- RTCP adjusts the time intervals between reports based on the number of receivers participating in a stream
- Typically, the bandwidth used for RTCP is limited to 5% of the session bandwidth. This fraction is shared between the report requests issued by the sources (25%) and the reports issued by the receivers (75%)
- -Ts: period of transmission of RTCP packet by the source:

```
T_s = \frac{Nombre \ de \ sources}{5\%*25\%*Bande\_passante\_session}*Taille\_paquet\_moyen\_RTCP
```

-Tr: RTCP packet transmission period by a receiver:

$$T_r = \frac{Number\ de\ r\'ecepteurs}{5\%*75\%*Bande_passante_session}*Taille_paquet_moyen_RTCP$$

Signaling Protocols: RTSP, SIP.

RTSP: Real-time streamingprotocol

- Client/server type application level protocol
- What it does not do
- Choice of compression techniques
- Choice of encapsulation
- Choice of transport protocol
- Choice of technique for buffering
- What he does
- Help the mediaplayerto control the transmission of an audio/video stream

Flow send control

RTSP session

Session ID chosen by the server

- Used in every message
- History of the state of the client at the server
- Stateful Protocol
- RTSP over UDP or TCP

SIP

Session Initiation Protocol

- Lightweight signaling protocol
- ModelClient server
- -Mechanisms for establishing/terminating a call on an IP network
 - Prevent the called party from the call
 - Agree on encoding
 - End a call
- -Mechanisms for determining which called party's IP address to use
- IP address not necessarily fixed
 - Mobility
 - Multi-terminals
- Call management
 - Changing encoding during a call
 - Invite other participants
 - Call transfer, etc.

SIP method

- Specified in the first bytes of SIP requests
- Indicates the purpose of the message
- GUEST
 - To initiate a session
- ACK
 - To confirm session establishment
 - Used with INVITE
- CANCEL
 - To cancel a pending INVITE request
- BYE
 - To end a session
- REGISTER
 - To register