MOHAMED KHIDER UNIVERSITY OF BISKRA.

FACULTY OF EXACT SCIENCES AND NATURAL AND LIFE SCIENCES DEPARTMENT OF BIOLOGY

Semester2: THERMODYNAMICS AND CHEMISTRY OF MINERAL SOLUTIONS

CHAPTER I
Part 2
Level: 1st year LMD

Dr: Ismail DAOUD

Academic year: 2023/2024

3. The pH of saline solutions:

We call salt any neutral species which, in solution. They are always trained in neutralization by reaction between acid and base.

Acid: (na, Ca, Va) + base: (nb, Cb, Vb)
$$\rightarrow$$
 Salt + H₂O

Examples: NaCl, NH4NO3.

3.1. The pH of a solution of strong acid and strong base:

Consider the following neutralization reaction:

$$HC1 + NaOH \rightarrow NaCl_{(s)} + H_2O$$

(S.A) (S.B) Salt

In aqueous solution, there is total dissolution of the salt: NaCl(s) (Sodium chloride)

$$NaCl_{(s)} + H_2O \rightarrow Na^+ + Cl^-$$

Cl⁻: Conjugate base (very weak) of a strong acid (HCl), Cl⁻: does not modify the pH of the solution: Cl⁻: is inactive (indifferent or spectator ion), it does not participate in any acid-equilibrium basic.

Na⁺: Conjugated acid (very weak) of a strong base (NaOH), Na⁺: does not modify the pH of the solution: Na⁺: is inactive (indifferent or spectator ion), it does not participate in any acid-base equilibrium.

pH(NaCl)= pH(H₂O)=
$$\frac{1}{2}$$
 pke =7 at t=25 C°

<u>Conclusion:</u> Salts of strong acids and strong bases dissociate in water without changing the pH, the solution remains neutral.

3.2. The pH of a solution of strong acid and weak base:

Consider the following neutralization reaction:

$$HCl + NH_3 \rightarrow NH_4Cl_{(s)} + H_2O$$

(S.A) (W.B) Salt

In aqueous solution, there is total dissolution of the salt: NH₄Cl(s) (Ammonium chloride)

$$NH_4Cl_{(s)} + H_2O \rightarrow NH_4^+ + Cl^-$$

Cl⁻: Conjugate base (very weak) of a strong acid (HCl), Cl⁻: does not modify the pH of the solution: Cl⁻: is inactive (indifferent or spectator ion), it does not participate in any acid-equilibrium basic.

 NH_4^+ : Conjugated acid (very weak) of a weak base (NH_3), it participates in acid-base equilibrium.

If: $[H_3O^+] >> [OH^-]$ and $[NH_4^+] >> [NH_3] \Rightarrow$ the acid is weakly dissociated. $pH(NH_4Cl) = pH(NH_4^+) = pH(Conjugate w. acid) = \frac{1}{2} (pka - log[NH_4^+])$ at t=25 C°

3.3. The pH of a solution of weak acid and strong base:

Consider the following neutralization reaction:

$$CH_3COOH + NaOH \rightarrow CH_3COONa_{(s)} + H_2O$$

(W.A) (S.B) Salt

In aqueous solution, there is total dissolution of the salt: CH₃COONa(s) (Sodium acetate)

$$CH_3COONa_{(s)} + H_2O \rightarrow CH_3COO^- + Na^+$$

CH₃COO⁻: Conjugate base (very weak) of a weak acid (CH₃COOH), it participates in acid-base equilibrium.

Na⁺: Conjugated acid (very weak) of a strong base (NaOH), Na⁺: does not modify the pH of the solution: Na⁺: is inactive (indifferent or spectator ion), it does not participate in any acid-base equilibrium.

If:
$$[OH^-] >> [H_3O^+]$$
 and $[CH_3COO^-] >> [CH_3COOH]$ \Rightarrow the base is weakly protonated.
 $pH(CH_3COONa) = pH(CH_3COO^-) = pH(Conjugate w. base) = \frac{1}{2} (pke + pka + log[CH_3COO^-])$ at $t=25 \text{ C}^{\circ}$

3.4. The pH of a weak acid and weak base solution:

Consider the following neutralization reaction:

$$CH_3COOH + NH_3 \rightarrow CH_3COONH_{4(s)} + H_2O$$

(W.A) (W.B) Salt

In aqueous solution, there is total dissolution of the salt: $CH_3COONH_{4(s)}$ (Ammonium acetate) of concentration = C

$$CH_3COONH_{4(s)} + H_2O \rightarrow CH_3COO^- + NH_4^+$$

CH₃COO⁻: Conjugate base (very weak) of a weak acid (CH₃COOH), it participates in acid-base equilibrium.

$$CH_3COOH + H_2O \rightarrow CH_3COO^- + H_3O^+ \dots Ka1$$

NH₄⁺: Conjugated acid (very weak) of a weak base (NH₃), it participates in acid-base equilibrium.

$$NH_4^+ + H_2O \rightarrow NH_3 + H_3O^+ \dots Ka2$$

However, the mixture between a w. A and a w. B gives a weakly acidic or weakly basic solution \Rightarrow pH is close to 7.

If : C >> [H₃O⁺] and C >> [OH⁻] \Rightarrow by making the product Ka1. Ka2 pH (CH₃COONH₄) = ½ (pka1 + pka2) , the pH is independent of the initial concentration C.

3.5. The pH of a buffer solution:

A buffer solution is defined as a mixture of a weak acid AH and their conjugates base A in equal or similar proportions.

The expression for the acidity constant Ka of the HA/A couple is:

$$\begin{split} K_a &= \frac{[A^-].[H_3O^+]}{[AH]} \ \Rightarrow \ [H_3O^+] = \frac{K_a.[AH]}{[A^-]} \\ pH &= pk_a - log \frac{[AH]}{[A^-]} \ \Leftrightarrow \ pH = pk_a - log \frac{[Acid]}{[Base]} \end{split}$$

Noticed:

A buffer solution can be obtained from:

- ➤ Weak acid AH + a weak base A.
- ➤ Weak acid HA + strong base.
- ➤ Weak base A⁻(NaA salt) + strong acid.

Buffer solutions have the property of minimizing pH variations caused by:

- > An addition of acid or base.
- An addition of solvent (dilution).