Stochastic Processes: Definitions and Examples

A stochastic process with state space § is a collection of random variables {X;,t € T} defined on
the same probability space (1, F, P). The set T is called its parameter set. If T = N={0,1,2....},
the process is said to be a discrete parameter process. If T' is not countable, the process is said
to have a continuous parumeter. In the latter case the usual examples are T'= Ry = [0, ) and
T = [ﬂ.b] C K. The index t represents time, and then one thinks of X; as the “state” or the
“position” of the process at time f. The state space is B in most nsual examples, and then the
process is said realsvalued. There will be also examples where S is N, the set of all integers, or a
finite set.
For every fixed w € {1, the mapping

t— Xi(w)

defined on the parameter set T, is called a realization, trajectory, sample path or sample function
of the process.

Let {Xi,t € T} be a real-valued stochastic process and {; < --- < t,} € T, then the
probability distribution P, _, = Po (X4, ..., Xs,)™" of the random vector

(Xiyyo Xe): 0 — B

is called a finite-dimensional marginal distribution of the process {X;,t € T}.

The following theorem, due to Kolmogorov, establishes the existence of a stochastic process
associated with a given family of finite-dimensional distributions satisfying the consistence condi-
tiom:

Theorem 3 Consider a family of probability mensures
(Pt 1< <tan 2 Lt €T}
such that:
1. By,..1, is a probability on R"

2. (Consistence condition): If {tg, < - < tg,} € {t1 < = < ty}, then P'kl:---ﬂkm is the
marginal of Py, _y,. corresponding to the indezes ky,. .. k.

Then, there exists a real-valued stochastic process {X;,t > 0} defined in some probahility space



A real-valued process {X;.t > 0} is called a second order process provided E{Jffj = oo for all
t £ T. The mean and the covariance function of a second order process {X;.t > 0} are defined by

mx(t) = E(X)
y(st) = Cov(X,.X,)
E{(X, — my(8))(X, — my(t)).

The variance of the process { X, t > 0} is defined by

oy (t) = Tx(t.f) = Var{Xy).

Example 12 Let X and V' be independent random variables. Consider the stochastic process with
parameter ¢ € [{), 20)

X=tX+¥
The sample paths of this process are lines with random coefficients. The finite-dimensional marginal
distributions are given by

1€i<n 1

P(Xy €330 Ko, 1) = ]1 Fx(min I‘_”)Prtdyl-

Example 13 Consider the stochastic process
X = Acos(p + M),

where A and  are independent random variables such that E(A) = 0, E(4%) < o and ¢ is
uniformly distributed on [0, 2x). This is a second order process with

mx(t} =

Tx(st) = =E(A)cosAlt-s).

bl — =

Example 14 Arrival process: Consider the process of arrivals of customers at a store, and suppose
the experiment is set up to measure the interarrival times. Suppose that the interarrival times are
pasitive random variables X, X5, .. .. Then, for each t £ [0, 2c), we put Ny = k if and only if the
integer k is such that
X+ + X gt < X+ + X

and we put Ny = 0if t < X;. Then N, is the number of arrivals in the time interval [0,f]. Notice
that for each t > 0, N} is a random variable taking values in the set § = N. Thus, {N,.f > (0} is
a continuous time process with values in the state space M. The sample paths of this process are

non-decreasing, right contimuous and they increase by jumps of size 1 at the points Xy + - + X
O the other hand, N; < oo for all { = 0 if and only if

o
E.l'k=3c.

k=1



Example 15 Consider a discrete time stochastic process { X, n = 01,2, .. .} with a finite number
of states § = {1,2,3}. The dynamics of the process is as follows. You move from state 1 to state 2
with probability 1. From state 3 you move either to 1 or to 2 with equal probability 1/2, and from
2 you jump to 3 with probability 1/3. otherwise stay at 2. This is an example of a Markov chain.

A real-valued stochastic process {X,.t € T} is said to be Gawssian or normal if its finite-
dimensional marginal distributions are mmlti-dimensional Gaussian laws. The mean my(t) and
the covariance function Ty (s,t) of a Ganssian process determine its finite-dimensional marginal

distributions. Conversely, suppose that we are given an arbitrary function m : T — R. and a
symmetric function [': T x T — K. which is nonnegative definite, that is

]
i =i

forallt;€ T,0, € K andn > 1. Then there exists & Ganssian process with mean m and covariance
function T

Example 16 Let X and ¥ be random variables with joint Gaussian distribution. Then the process
X =tX +V, t =10, 5 Ganssian with mean and covariance fimetions

LE(X) + E(Y),
tVar(X) + (5 +#)Cov(X. V) + Var(Y).

mx(t)
[y(z.t)

Example 17 Gaussian white noise: Consider a stochastic process | Xp, # € T} such that the random
variables X, are independent and with the same law ."'u’{l.':l,q:rgj. Then, this process is Ganssian with
mean and covariance funetions

1]
1 if s=t
0 if s#t

Definition 4 A stochastic process { Xt € T} is equivalent to another stochastic process {1 €
T}iof foreachteT

my(t)

[ylat)

PlX;=Y}=1L
We also say that {X;. ¢ € T} is a version of {¥;,t € T}. Two equivalent processes may have
quite different sample paths.
Example 18 Let £ be a nonnegative random variable with continuous distribution function. Set
T =0, xc). The processes
"'..:t = f:l

[0 E#t
F*'{1“‘5::

are equivalent but their sample paths are different.

Definition § Twe stachastic processes { X, t € T} and {¥,t € T} are said to be indistinguishable
if X.w) = Yi(w) for all w ¢ N, with P[N) = 0.



Two stochastic process which have right continons sample paths and are equivalent, then they
are indistinguishable. Two discrete time stochastic processes which are equivalent, they are also
indistingnishahle.

Definition & A mal-valued stochastic process {Xe.f € T}, where T' s an interval of B, is soid fo
be continuous in probability if, for any £ > 0 and cvery i € T

lim P(|X; - Xa| > ¢) =0

Definition 7 Fixp > 1. Let { Xi,t € T}be a real-valued stochastic process, where T is an interval
of R, such that E(|X;|F) < o, for allt € T. The process {X;,t > 0} is said to be continnous in
mean of order p if

lim E{|X; — X,Jf) =0

syl

Continuity in mean of order p implies continuity in probability. However, the continmity in
probability (or in mean of order p} does not necessarily implies that the sample paths of the

process are continnous,
In arder to show that a given stochastic process has continuons sample paths it is enongh to

have suitable estimations on the moments of the increments of the process. The following continuity
eriterion by Kolmogorov provides a sufficient condition of this type:

Proposition 8 {Kolmogorov continuity criterion) Let {¥,.t € T} be a real-valued stochastic
process and T is a finite inderval. Suppose that there exist constonts a > 1 and p > () such that

E (X, - X,J") < exlt - " (1)

for all .t € T. Then, there exists a version of the process {Xy.t € T} with continuous sample
piths.

Condition (1) also provides some information about the modulus of continnity of the sample
paths of the process. That means, for a fixed w € ©, which is the order of magnitude of X,(w) —
X,(w). in comparison |t — s|. More precisely, for each £ = () there exists a random variable G, such
that, with probahility one,

Xufe) = X, ()] € Gl = of5™ o)
for all 5.t £ T. Moreover, E((}) < .

The Poisson Process
A random variable T : £ — (0, o) has exponential distribution of parameter A = 0 if
PT>t)=e™
for all ¢ > 0. Then T has a density finction
fr(t) = Ae™1g ) (1).

The mean of T is given by E(T) = §, and its variance is Var(T) = 4. The exponential distribution
plays a fundamental role in continuous-time Markov processes because of the following result.



