
Chapitre 1. Les capteurs et chaine d'acquisition

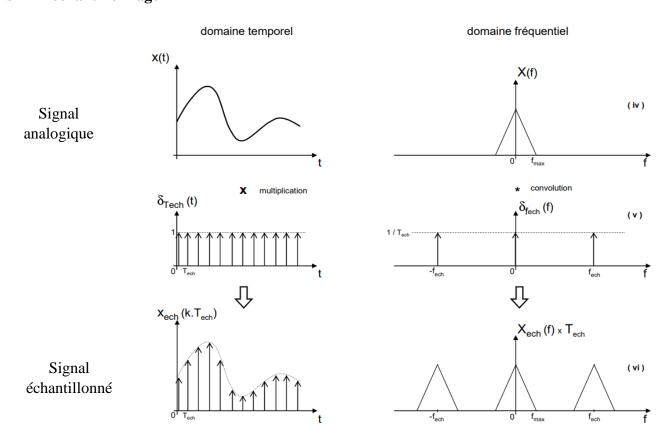
1.1. Eléments constitutifs d'une chaine de mesure

La chaîne de mesure est constituée de l'ensemble des dispositifs, y compris le capteur, rendant possible, dans les meilleures conditions, la détermination précise de la valeur du mesurande.

a- Le conditionneur

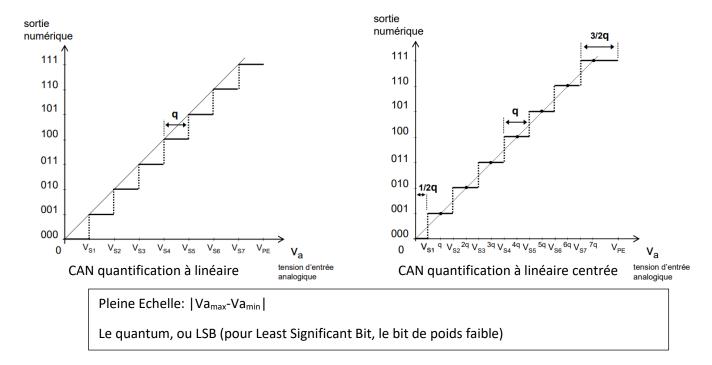
Un conditionneur (amplificateur, pont de Wheatstone, oscillateur, ...etc.) est un circuit associé au capteur passif ou actif dont la sortie est signal électrique adapté à l'entrée du CAN.

b- Le convertisseur analogique numérique (CAN)

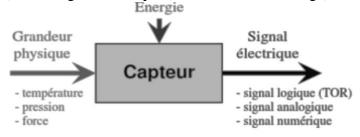

Un convertisseur analogique – numérique (CAN) est un dispositif électronique permettant la conversion d'un signal analogique en un signal numérique.

Un **signal analogique** est un signal continu dans le temps qui peut prendre une infinité de valeurs.

Un **signal numérique** est un signal discret dans le temps et qui prend un nombre fini de valeurs.


Conceptuellement, la conversion analogique – numérique peut être divisée en trois étapes : **l'échantillonnage** temporel, la **quantification** et le **codage**.

b-1- L'échantillonnage


Théorème de Shannon, ou théorème de l'échantillonnage : "Un signal x(t) peut être représenté de manière univoque par une suite de valeurs échantillonnées si la fréquence d'échantillonnage, f_{ech} , est au moins deux fois plus élevée que la plus grande des fréquences, f_{max} , contenues dans le spectre."

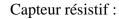
b-2- Caractéristique de transfert d'un CAN

1.2. Définition d'un capteur

Un capteur est un dispositif transformant une grandeur physique non électrique (température, pression, position, concentration, etc.) en un signal électrique (tension, courant, charge).

1.3. Capteurs passifs:

Il s'agit d'**impédance**s dont l'un des paramètres déterminants est sensible au mesurande m (grandeur physique). Dans l'expression littérale d'une impédance sont présents des termes liés :


- d'une part à sa géométrie et à ses dimensions ;
- d'autre part aux propriétés électriques des matériaux : résistivité p, perméabilité magnétique μ , constante diélectrique c.

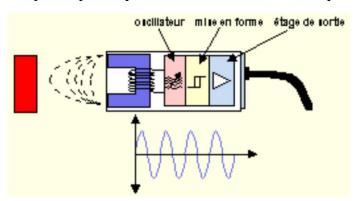
Mesurande	Caractéristique électrique sensible	Types de matériaux utilisés	
Température	Résistivité	Métaux : platine, nickel, cuivre. Semi-conducteurs.	
Très basse température	Constante diélectrique	Verres.	
Flux de rayonnement optique	Résistivité	Semi-conducteurs.	
Déformation	Résistivité	Alliages de nickel, silicium dopé.	
	Perméabilité magnétique	Alliages ferromagnétiques.	
Position (aimant)	Résistivité	Matériaux magnéto-résistants : bismuth, antimoniure d'indium.	
Humidité	Résistivité	Chlorure de lithium.	
	Constante diélectrique	Alumine; polymères.	
Niveau	Constante diélectrique	Liquides isolants.	

Exemples de capteurs passifs :

Capteur résistif:

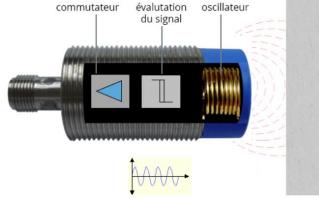
RTD Pt100 Temperature Sensor Probe 3 Wires

LDR (Light Dependent Resistor)



Capteur capacitif:

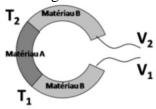
Capteur de proximité capacitif pour liquides et matériaux non métalliques



Capteur inductif:

Capteur d

e proximité inductifs pour matériaux métalliques

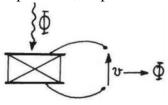

1.4. Capteurs actifs:

Le capteur actif **transforme directement** la grandeur physique en grandeur électrique (tension, courant, charge).

Mesurande	Effet utilisé	Grandeur de sortie
Température	Thermoélectricité	Tension
Flux de rayonnement optique	Pyroélectricité	Charge
	Photoémission	Courant
	Effet photovoltaïque	Tension
	Effet photoélectromagnétique	Tension
Force Pression Accélération	Piézoélectricité	Charge
Vitesse	Induction électromagnétique	Tension
Position (aimant)	Effet Hall	Tension

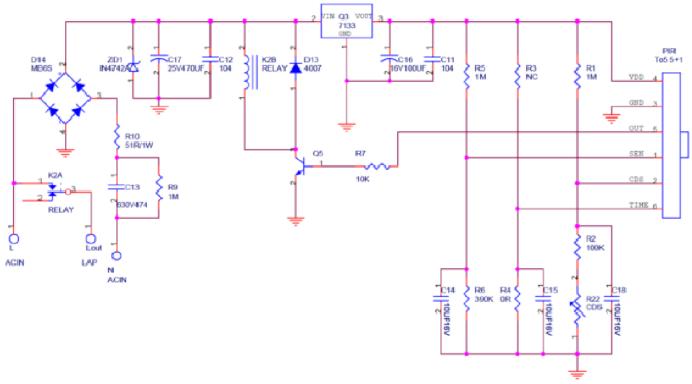
Effet thermoélectrique

Un circuit formé de deux conducteurs (matériau A et matériau B) de nature chimique différente dont les jonctions sont à des températures T_1 et T_2 est le siège d'une force électromotrice V_2 - V_1 .

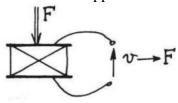


Exemple : Sonde de Thermocouple de Type K 0-1100 $^{\circ}$ C

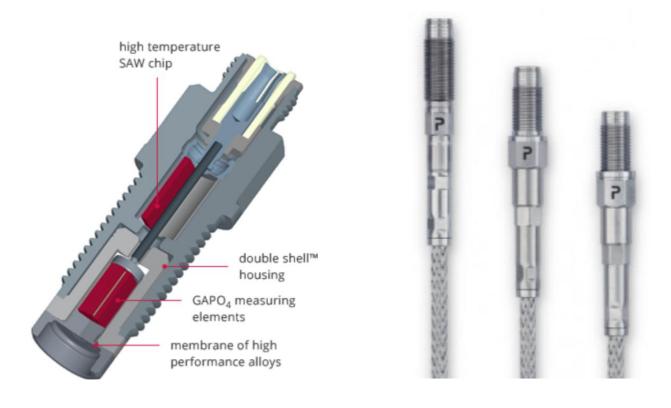
Effet pyroélectrique


Certains cristaux dits pyroélectriques, le sulfate de triglycine par exemple, ont une polarisation électrique spontanée qui dépend de leur température ; ils portent en surface des charges électriques

Exemple: Capteur infrarouge pyroélectrique intelligent numérique, PIR

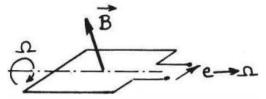


AC OPERATED PIR LIGHT SWITCH



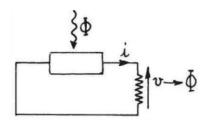
Effet piézoélectrique

L'application d'une force et plus généralement d'une contrainte mécanique à certains matériaux dits piézoélectriques, le quartz par exemple, entraîne une déformation qui suscite l'apparition de charges électriques égales et de signes contraires sur les faces opposées.



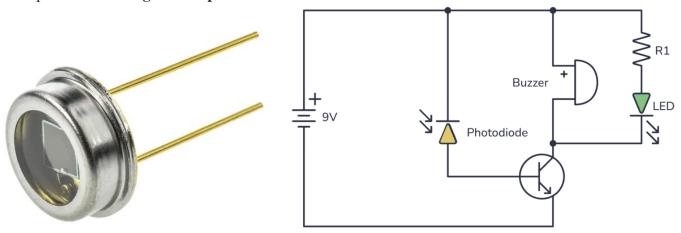
Exemple : Capteur de Pression Piézoélectrique - 0 à 1000 bar

Effet d'induction électromagnétique


Lorsqu'un conducteur se déplace dans un champ d'induction fixe, il est le siège d'une f.é.m. proportionnelle au flux coupé par unité de temps, donc à sa vitesse de déplacement.

Exemple : Génératrice tachymétrique

Effets photoélectriques

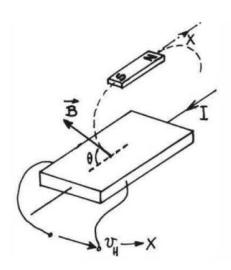

Effet photoémissif

Dans l'effet photoémissif, un photon frappant une **plaque métallique** provoque l'émission d'un électron qui est accéléré par un champ électrique. Le nombre d'électrons émis est proportionnel à l'éclairement.

Effet photovoltaïque

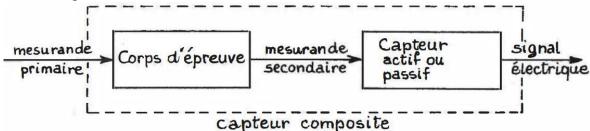
Des électrons et des trous sont libérés au voisinage d'une **jonction de semi conducteurs** P et N illuminée ; leur déplacement dans le champ électrique de la jonction modifie la tension à ses bornes.

Exemple: Circuit diagram for photodiode-based fire sensor


Effet photoélectromagnétique

L'application d'un champ magnétique perpendiculaire au rayonnement provoque dans le matériau éclairé l'apparition d'une tension électrique dans la direction normale au champ et au rayonnement.

Effet Hall


Un matériau, généralement **semi-conducteur** et sous forme de plaquette, est parcouru par un courant I et soumis à une induction B faisant un angle θ avec le courant. Il apparaît, dans une direction perpendiculaire à l'induction et au courant une tension v_H qui a pour expression :

$$v_H = K_H \cdot I \cdot B \cdot \sin \Theta$$

1.5. Corps d'épreuve. Capteurs composites

Le corps d'épreuve est le dispositif qui, soumis au mesurande étudié en assure une première traduction en une autre grandeur physique non-électrique, le mesurande secondaire, qu'un capteur adéquat traduit alors en grandeur électrique.

Ainsi, par exemple, une traction F exercée sur une barre (longueur L, section A) entraı̂ne une déformation $\Delta L/L$ qui est mesurable par la variation $\Delta R/R$ de la résistance d'une jauge collée sur la barre.