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Exercise 01
Let X;,t € N be a random process, with X; = mt+b+¢,, where §,,t € N are independent and identically
distributed random variables, such that

E]=0, et Var[¢,] = 0%Vt € N.

1) Is the process (X;) stationary?

2) We consider a new process Y;,t € N, by ¥; = X; — X;_1. Show that (Y;) is stationary.
Exercise 02

1) Let X;,t € & C N be a random process, such that

P(X,=1)=P(X,=-1)=05, Vt€ .

Is this process stationary?
2) Let X;,t € & C N be a random process, such that

P(Xt:O):l—%,P(Xt:\/E) :%,P(th—\/i) :%.

Is this process stationary?
Exercise 03
Let Y;,t € N be a random process, Y; = (—l)t X, t € N, where X;,t € N is a stationary process

E[X; =0,FE[X;X,] =0Vt #s, et Var [X;] = 0?,Vt € N.

Consider the process Z; = X; 4+ Y;,t € N. Is this process stationary?
Exercise 04
Let X,,, n € N be a discrete-time random process such that F [X,] =0, Vn € N
o2
Var[X,) ={ 1=
o, sin>1,

sin=0,

with 0 < p? < 1, and F[X;X;] = 0,Vi # j. Now we build a new discrete-time process

7 — )(07 si 77,:0,
" plpy+ Xn, sin>1,

known as the first-order autoregressive process. Show that Z,, is stationary.

Exercise 05

Show that if the process {X (t),t € R} is strictly stationary, such that for all t € R E [X (¢)] < oo, then
V(t,s) eRxR

R(s,t) = Cov (X, Xs),
= r(t—s).
Exercise 06. Find the stationary processes among the following processes:
1) Xy = Z; if t is even, and X; = Z; + 1 if ¢ is odd, with (Z;),, stationary;

2) Xy =Z1+ -+ Z; where (Z;),, is white noise;
3) Xe =Zy +0Z;_1, where (Zt)tez is white noise and 6 € R a constant;



4) Xy = ZyZ; 1 where (Z4),., is white noise;

5) Y, = (—=1)"Z; and X; =Y, + Z; where (Z;),c, is white noise.

Exercise 07

1) Let {X (t),t € R} be a stationary process whose correlation function is r (t) = e~#I*l, 8 > 0. Calculate
its spectral density.

2) Let X (£) = 60X (t — 1) +€(t), |0] <1, or {e(t)} follows a distribution N (0,0?), Show that

2 2
ag t ag i —2
r(t) = 17929| et f(/\):—%yl—ee ™.

Exercise 08
Let {X (t),t € R} be a random process satisfying the following conditions
1) E[|IX (#)]] < oo, VEER

d
2) Vw € Q it exists X' (¢t) = X'(t;w) = %X (t,w).
3) | X7 (t,w)| <Y (w), w € Q, where Y is a random variable such that F [|Y]] < oo.

d
Show that F [X (t)] is differentiable with respect to t and we have %E (X ()] = E[X'(t)].

Exercise 09
Let {X(¢),t € [a,b]} be a random process such that
1) X (t,w)] <Y (w),w € Q, ¥Vt € [a,b], where Y is an integrable random variable.
2) for all w € ) the trajectories X (¢,w) are integrable on [a, b].
3) E[X (¢)] is Riemann integrable over [a, b].
Show that .
/ X () dt] .

/bE[X(t)]dtzE




Since the process {X(t), tHlR} is strictly stationary, it means that for any time shift h, the joint distribu-
tion of X(t) and X(t+h) is the same as the joint distribution of X(s) and X(s+h) for any s. In other words,
the joint distribution of X(t) and X(t+h) depends only on the time lag h and not on the specific time t or s.

Now, let’s consider the covariance function R(s,t) = Cov(X(t),X(s)) for any (t,s)MRxR.Withoutlossof generality, wecanas

R(s,t) = Cov(X(t),X(s))

— B[(X(t) - EX()])(X(5) - BIX(5)])]

— BX(1)X(5)] - EX(6)]E[X(s)]

Since the process {X(t), tHR} is strictly stationary, we can use the time shift property to write:

E[X(t)X(s)] = E[X(t+h)X(s+h)] = R(h) + E[X(t+h)]E[X(s+h)]

where R(h) = Cov(X(t+h),X(s+h)) is the autocovariance function of the process at lag h. Note that
R(h) does not depend on the specific values of t and s, but only on the time lag h.

Substituting this expression into the equation for R(s,t), we get:

R(s,t) = R(h) + E[X(t+h)]E[X(s+h)] - E[X(t)]E[X(s)]

Since we are assuming that E[X(t)] and E[X(s)] are finite for all t and s, we can take the limit as h Il 0
to get:

R(s,t) = lim_ {hM0} [R(h) + E[X(t+h)]E[X(s+h)] - E[X(t)]E[X(s)]]

= R(0)

To show that if the process {X(t), t Bl R} is strictly stationary and has finite mean, then for all (t,s) B R

x R, wehaveR(s,t) = Cov(Xt, Xs) = r(t—s), weneedtousethepropertieso f strictstationarityandsomeal gebraicmanipulatior

First, let’s recall the definition of strict stationarity: a stochastic process {X(t), t l R} is strictly
stationary if its distribution is invariant to time shifts, i.e., for any s,t M R and any k B R,
P(X(t) M x) = P(X(t+k) B x),
where P is the probability measure.
Using this property, we can show that Cov(Xt,Xs) = r(t-s) for all s,t B R:
COV(Xt,Xs) = E[(Xt - E[Xt])(Xs - E[Xs])] (by definition of covariance)
E[(Xt - E[Xt])(Xt+k - E[Xt+k])]
[(Xt - E[Xt])(Xt+k - E[Xt] + E[Xt] - E[Xt+k])]
(Xt - E[Xt])(Xt+k - E[Xt])] + E[(E[Xt] - E[Xt+k])(Xt - E[Xt+k])]
[ ]
[

(Xt - E[Xt])(Xt+k - E[Xt])] (since E[Xt] = E[Xt+k])
XtXt+k] - E[Xt]E[Xt+k] - E[Xt]E[Xt+k] + E[Xt]"2
= E[XtXt+k] - E[Xt]"2

Now, let’s define r(k) = Cov(Xt,Xt+k). Using the definition of covariance, we have:

r(k) = Cov(Xt,Xt+k) = E[(Xt - E[Xt])(Xt+k - E[Xt+k])]

Substituting k = s-t, we get:

r(s-t) = Cov(Xt,Xs) = E[(Xt - E[Xt])(Xs - E[Xs])]

Comparing this with our expression for Cov(Xt,Xs) above, we get:

Cov(Xt,Xs) = r(s-t)

Therefore, if the process {X(t), t M R} is strictly stationary and has finite mean, then for all (t, s) B R
x R,wehaveR(s,t) = Cov(Xt,Xs) =r(t — s).

E
=E
=E
=E

To find the autocorrelation function r(t) of the given process {X(t)}, we can use the formula:

r(t) = Cov(X(t), X(t-H)) / Var(X(t))

where Cov is the covariance function and Var is the variance function.

Let’s start with the covariance function:

Cov(X(t), X(t- M) = B[X(6)X(t-M)] - E[X(6)]E[X (t-M)]

Since X(t) = HX(t-1) + M(t), we have:

X(6)X(t-H) = (WX(t-1) + H(t)) (WX (t-1-H) + H(+-H))

=W 2X(t-1)X(¢-1-1) + H(+-l)X(t-1) + ()X (t-1-8) + H(t)E(+-H)

Taking expectations and using the fact that B(t) and H(t-H) are uncorrelated and have mean zero, we
get:

EX(t)X(t-H)] = B2 E[X(t-1)X(t-1-H)] + B2 H(H)

where l(M) is the Kronecker delta function, which equals 1 if ll = 0 and 0 otherwise. Similarly, we have:

E[X(t)] = B E[X(t-1)]

EIX ()] — - { W]} E[X(t)

Substituting these expressions into the formula for Cov, we get:



Cov(X(t), X(t-H)) = { W} r(0) + W2 H(H)

where r(0) = Var(X(t)) is the autocovariance at lag 0. Solving for r(0), we get:

1(0) = (Cov(X(t), X(+-M)) - M2 M(W)) / W { |m]}

Substituting B = 0, we get:

r(0) = Var(X(t)) = (Cov(X(t), X(t)) - W°2) / (1-W"2)

Since X(t) = HX(t-1) + H(t), we have:

Var(X(t)) = B2 Var(X(t-1)) + B2

Substituting this expression into the formula for r(0), we get:

r(0)=m2/(1-W2)

Finally, substituting r(0) into the expression for Cov(X(t), X(t-ll)), we get:

Cov(X(t), X(t-H)) = { W} B2/ (1-W2)

Dividing both sides by Var(X(t)), we get:

() — W W} W2 /(1 W2)

Therefore, the autocorrelation function of the process {X(t)} is:

r(t) = ((W°2)/(1-8"2))m"{|t[}

This result shows that the autocorrelation function of the process decays geometrically with lag t, and
depends on the magnitude of l and BM~2. When B = 0, the process reduces to a white noise process with
constant variance, and when ll = 1, the process reduces to a random walk with





