PW no.3 : Calorimetry Measuring dissociation energy of a solid body

1- General:

- ➤ Chemical thermodynamics covers all energy exchanges that accompany changes of state and chemical reactions.
- ➤ Calorimetry is based on a fundamental principle: principle of equality of heat exchanges (what is lost by one medium is gained by another medium): this is the first principle of thermodynamics.
- > The reactions release heat, they are exothermic reactions.
- ➤ Other reactions can absorb heat, they are endothermic.

Example:

$$(AX)_{S} \longrightarrow (A^{+}, X^{-})_{L} + \Delta H \text{ (cal)}$$

$$\Delta H = Q_{p} = m C_{p} \Delta T = m C_{p} (T_{f} - T_{i})$$

 ΔH : variation of enthalpy (joule or cal), C_p : Heat capacity (cal/g.K)

2- Principle of manipulation:

- ➤ In an isolated medium (Calorimeter), [standard condition i.e.: P=1atm=Cte)], we can determine the quantity of heat absorbed or released during the dissociation of solid bodies in water.
- Inside a calorimeter (we neglect its mass):

$$\sum \Delta H_p = 0$$
=>\Delta H_{12O} + \Delta H_{diss} + \Delta H_c = 0 => \Delta H_{diss} = - \Delta H_{12O} = - (m \C_p \Delta T)

If we have:

✓ $\Delta H > 0$: endothermic reaction ✓ $\Delta H < 0$: exothermic reaction ✓ $\Delta H = 0$: athermal reaction

3- But:

Measuring dissociation energy of a solid body.

4- Materials:

Test tubes, Calorimeter (Dewar), Thermometer, evaporating dish, Spatula, Graduated cylinder, Electric balance.

5- Products used:

Ammonium chloride (NH₄Cl), Sodium chloride (NaCl), Sodium hydroxide (NaOH), Distilled water.

6- Operating Mode:

a. Effect of temperature:

Prepare 3 test tubes numbered 1 to 3 and fill them with 10ml of distilled water and then measure the temperature for each tube.

Weigh the same amount (1g) of the following body:

- 1) NH₄Cl and put it in **tube 1** and note the dissociation temperature T_1 (diss).
- 2) NaCl and put it in **tube 2** and note the dissociation temperature T_2 (diss).
- 3) NaOH and put it in **tube 3** and note the dissociation temperature T_3 (diss).

b. ΔH_{diss} determination of the dissociation of NH4Cl and NaOH:

- Place 100 ml of distilled water in the calorimeter and note its temperature T_i.
- Add 1g of NH₄Cl to the calorimeter, close and stir, note the temperature T_f (diss).
- Repeat the same steps for NaOH.