
25

Chapter 3: Control structures

1. Introduction

The control structures allow an algorithm (program) to not be purely sequential (linear chain
of instructions).

In certain cases, the algorithm may:

• only execute specific instructions under certain conditions.
• repeat the same instructions several times.

In general, there are two types of control structures that allow this.

• The conditional structures: only execute certain instructions under certain conditions.
 The repetitive structures (loops): repeat the same instructions a certain number of

times (under certain conditions)

2. Conditional structures

There are three types of conditional structures:

• Simple conditional structure: if. . .endif
• Compound conditional structure: if. . . . else endif.
• Multiple choice structure: AccordingTo. . else. . endAccordingTo.

2.1. Simple conditional structure

This structure allows to execute one or more instructions if a condition (a condition is an
expression whose evaluation result can be TRUE or FALSE) is true and to exit the control
structure if the condition is false.

The expression can be simple (single condition) or composed (several composed conditions
with logical operators AND, OR, NOT).

Syntax:

if (condition) then

 Instructions ;

Endif ;

26

The simple conditional structure can be represented in a flowchart as follows:

A. Examples :

Exp 1 :

Algorithm positive;
Var
 X : integer ;
Begin
 read(X) ;
 if (X ≥ 0) then
 write(X) ;
 Endif ;
End.
Semantics: We display the value of X if it is only greater than or equal to 0.

Exp 2 :

Algorithm positive ;
Var
 X : integer ;
Begin
 Read(X) ;
 if (X < 0) then
 X ← X * (-1);
 Endif ;
 Write(X) ;
End.

Semantics: If the value of X is negative (less than 0) we multiply it by -1, the displayed result is
always a positive value.

27

Exp 3 :

Algorithm range ;
Var
 X : integer ;
Begin
 read(X) ;
 if ((X > 10) AND (X < 15)) then
 Write(X) ;
 Endif ;
End.
Semantics: We display the value of X if it is between 10 and 15.

Exp 4 :

Algorithm range ;
Var
 X : integer ;
Begin
 Read(X) ;
 if (X > 10) then
 if (X < 15) then
 write(X) ;
 endif ;
 endif;
end.

Semantics: This example is equivalent to the previous example, except that this time we use nested
tests.

B. Simple conditional structure using C language:

The simple conditional structure is represented in C language as follows:

Algorithm Program in C

if (condition) then

 Instructions ;

endif ;

if (condition)
 {
 Instructions ;
 }

Remark : If the bloc of instructions is composed of only one operation the brace symbol “{ }”
become not obligatory.

28

Example :

Algorithm Program 1 Program 2
Algorithme condition ;
 Var
 X : integer ;
Begin
 read(X) ;
 if (X > 10) then
 write(X) ;
 endif ;
end.

int main ()
{
 Int X;
 Scanf(‘’%d’’ , &X);
 if (X > 10)
 {
 printf(X) ;
 }

 return 0 ;
}

Int main ()
{
 Int X;
 Scanf(‘’%d’’ , &X);
 if (X > 10)
 printf(X) ;

 return 0 ;
}

Programs 1 and 2 are both correct.

Exercises :

1) Represent the examples 3 and 4 by a flowchart.
2) Study the flowing algorithms.

Exp a :

Begin
 Read(X) ;
 if (X < 10) then
 if (X > 15) then
 write(X) ;
 endif ;
 endif ;
end.

Exp b :

Begin
 read(X) ;
 if (X < 10) OR (X > 15) then
 write(X) ;
 endif ;
end.

Semantics : ……. Semantics : ……..

29

2.2. Compound conditional structure

Allows choosing between two blocks of instructions which ones to execute, according to the
condition, if it is true, the first block of instructions is executed, otherwise, if it is false, the
second block of instructions is executed.

Syntax:

if (condition) then

 Block of instructions 1;

else

 Block of instructions 2;

endif ;

The simple conditional structure can be represented in a flowchart as follows:

A. Translation to C programming language

The compound control structure is represented in C language as follows:

Algorithm Program in C

if (condition) then
 Block of instructions 1;
else
 Block of instructions 2;
endif ;

If (condition)
{
 Block of instructions 1;
}
else
{
 Block of instructions 2;
}

False

Block of
instructions 2

Block of
instructions 1

Condition
True

30

Example:

Consider the following algorithm which displays whether a number is positive or negative.

Algorithm pos_neg;
var
 A: integer;
Begin
write ("Enter the value :");
read (A);
 if (A ≥ 0) then
 write (“positive”);
 else
 write (“negative”);
 endif ;
End.

Question: Translate the algorithm into C program.

Exercises:

1- Write an algorithm that displays the price of a printers order. The price of single printer

(Canon 3110) is 50000 DA. From the fifth printer any other purchased will be counted
45000 DA. Translate the algorithm into C program.

Solution:
Algorithm order ;
 Var
 Nb, price : integer ;
 Begin
 read (nb);
 if (nb > 5) then
 price ← (50000*5)+(45000 x (nb-5)) ;
 else
 price ← 5000 x nb ;
 endif ;
 write(‘’the total price = ’’, price) ;
Fin.

31

2- Write an algorithm that displays the set of solutions on R of the first degree equation ax +
b = 0

Solution:
Algorithm first_degree;
Var
 a,b:integer;
Begin
 Read(a,b);
 If (a≠0) Then
 Write("The solution of the equation = ",-b/a);
 else
 if (b=0) Then
 Write("The solution of the equation is indeterminate");
 else
 Write("The solution to the equation is impossible");
 endif ;
 endif ;
end.

32

2.3. Multiple choice conditional structures

The multiple choice structure allows comparing an object (variable or expression) to a set of
values, and executes one of several blocks of instructions, depending on the actual value of
the object. A default statement block may be provided in the case where the object is not
equal to any of the listed values.

This structure avoids the need for nested conditional structures and offers better
comprehension of the solution.

Syntax :

Algorithm Program in C

AccordingTo (variable ou expression) do

 Value 1 : block of instructions 1 ;

 Value 2 : block of instructions 2 ;

 ……………………

 Value N : block of instructions N ;

 Else default instructions block;

endAccordingTo;

switch(x)

 {

 case value_1 : block of instructions 1 ; Break;

 case value_2 : block of instructions 2 ; Break;

 …………………..

 case value_N : block of instructions N ; Break;

 default: default instructions block;

 }

The multiple choice conditional structure can be represented in a flowchart as follows:

33

Remarks:

• The default line is optional
• In the multiple choice instruction, the order of presentation changes nothing.
• The expression and the cases values must be in the same type.

Example:

In the following example, the value of X is displayed in letters, if it is equal to 1, 2 or 3
otherwise it displays an error message.

Condition 1

Condition 2

Condition N

Block of instructions 1

Block of instructions 2

Block of instructions N

True

True

True

False

False

False

Default instructions block

34

Algorithm display_letter;
 Var
 X: integer;
 Begin
 Read(X);
 AccordingTo (X) do
 1: write (“One”);
 2: write (“Two”);
 3: write (“Three”);
 Else write(‘’The value entered is: > 3 or < 1’’);
 endAccordingTo;
 end.

Program in C :

#include <stdio.h>
Int main ()
{
 Int x;
 Scanf(‘’%d’’,&x);
 switch(x)
 {
 case 1 : printf(“one”);
 Break;
 case 2 : printf(“two”);
 Break;
 case 3 : printf(“Three”);
 Break;
 default:
 printf(“the value entered is : > 3 or < 1”);
 }

35

2.4. Branching operator

It is possible to jump directly to an instruction using a branch operation of the form goto
identifier. The identifiers are labels or addresses of branching.

Syntax:

Example :

Algorithm branching;
 Var

 a: integer;
 begin

 read (a);
 goto 1;
 a ← a+1 ;
 1: a ← a+2;
 write (a) ;

 End.

If the value of a = 5 the displayed result will be 7.

Note :

The use of the go to branch should be avoided, because it reduces the readability of the codes
and often leads to semantic errors.

Algorithm

goto label ;

label :

36

Exercise: Consider the following algorithm:

Algorithm Branching;
 Var
 a : integer;
 begin
 label1: write (” Enter an integer number :”);
 read (a);
 if (a mod 2 = 0) then
 goto label2; // conditional branching
 endif ;
 write(“the number entred is odd !”);
 goto label1; // unconditional branching
 label2: write (“the number is even”);
 end.

Write the algorithm in C language ?

Solution :

#include<stdio.h>
void main()
{
int a,b;
label1: printf (” Enter an integer number :”):
scanf("%d",&a);
if (a % 2 == 0)
 {
 goto label2 ;
 }
 printf("\n the number entred is odd ! \n ");
 goto label1 ;
 label2 : printf("\n the number is even \n ");
}

Exercise 1:

Using the branch instruction, write an algorithm that calculates the sum of two real numbers
entered on the keyboard at the request of the user, it means, repeat the steps by asking the
user at the end of each calculation whether he wishes to repeat the sum calculation operation
(Yes/No) or not.

• Translate into a C program.

37

Solution in C language :

#include<stdio.h>
void main()
{
 int a,b,s,c;

 et1:
 scanf("%d",&a);
 scanf("%d",&b);
 s=a+b;
 printf("la somme = %d \n",s);
 printf("do you want to repeat the calculation operation ? 1 : Yes, 2 : No");
 scanf("%d", &c);
 if(c==1)
 goto et1;

 printf("\n Thank you \n");
}

Exercise 2 :

Write an algorithm that asks the user for two integers and, without calculating the product, it
displays whether the product is negative, positive or equal to zero.

• Translate into a C program.

