MOHAMED KHIDER UNIVERSITY – BISKRA-FACULTY EXACT SCIENCES AND SCIENCES OF THE NATURE AND LIFE DEPARTMENT OF SCIENCES OF THE NATURE AND LIFE 1st year common core Biology 2023/2024

Practical work Nº 4: Modeling the Behavior of a Converging Thin Lens

I.1. Descartes' conjugate relationship is as follows:

 \overline{OA} is an algebraic quantity indicating the position of the light object (relative to the lens).

 $\overline{OA'}$ is an algebraic quantity indicating the position of the corresponding image (relative to the lens).

 $\overline{OF'}$ is the position between the lens and the image focal point. This distance is called the focal length, also denoted as f'.

To simplify calculations, let's set $\overline{OA} = x$ and $\overline{OA'} = x'$, allowing the use of the simplified relationship: 1/f = 1/x - 1/x'

I.2. Equipment used (see diagram below) to verify Descartes' relationship includes: - An optical bench - A light object (light source with letter F) - A converging thin lens with focal length f'th = 100 mm + its support - A screen + its support

I.3. Modeling of the experimental situation

The letter F will be modalized below by the object AB.

I.4. Elaboration

Using Descartes' equation and your knowledge from the course, complete the table below and rediscover Descartes' conjugate relationship.

X(m)	-0.400	-0.300	-0.250	-0.200	-0.150
X′(m)					

 Create the quantity A = 1/x and B = 1/y with y = 1/x' A = 1/x B = 1/y

$A = \frac{1}{x}(m^{-1})$			
$B = \frac{1}{y}(m^{-1})$			

- 2. Plot the curve: B = f(A).
- 3. Show that the obtained equation has the same form as Descartes' conjugate relationship.
- 4. The statement mentions a lens with a focal length f'th = 100 mm. Calculate the relative deviation η = 100*(f'exp f'th) / f'th.

Reminder: The vergence C is defined as C = 1/f'. If f' is in meters (m), C is in diopters (D), with C = 9.713 δ .

5. conclusion.

<u>Report of</u> <u>Practical work N⁰3</u>

GROUP	
STUDENTS	

complete the table below

X(m)	-0.400	-0.300	-0.250	-0.200	-0.150
X′(m)					

1. Create the quantity A = 1/x and B = 1/y with y = 1/x', A = 1/x,B = 1/y

$A = \frac{1}{x}(m^{-1})$			
$B = \frac{1}{y}(m^{-1})$			

A(m⁻¹)