
1

University Mohamed Khider Biskra

Faculty of exact sciences and natural and life sciences.

Department of Computer Science

Level : 2LMD Date: March 2024 Module : Operating Systems 1

Series 2: Non-contiguous memory management (solution)

Exercise 1
I)

a)

 1) Size of the logical address space (virtual memory space) is:

 2
24

 = 16MB (address on 24 bits therefore the number of combinations or addresses =2
24

)

2) Offset= 9 bits (since 2
9
=512 the size of a page, so 9 bits are needed to address the 512 slots)

3) 24 – 9 = 15 bits (logical address=[p,offset], offset=9, then p=24-9=15bits)

 4) 20 bits (M.M size=1MB=2
20

 bits So the number of bits for addressing this space 2
20

is 20 bits)

5) 20 – 9 = 11 bits (since total bits for a physical address =20 then offset=9 So 20-9=11bits for the frame)

6) 2
15

 = 32KB (the number of bits to address the pages is 15 then the number of all page addresses = 2
15

which represents the number of elements in the page table = the entries of Page Table)

b) Yes. The program needs 2000 bytes of data (vector) and 1024 bytes of code, so a total of 3024 bytes in

memory.

The number of occupied pages: [3024 / 512] = 6 pages. In the last page, there remain 512 – 464 = 48 free

bytes (464=3024-(512*5)), which causes an internal fragmentation.

II) 32/4=8 bits (The format PT1(8bits) PT2(8bits) PT3(8bits) offset(8bits)

The number of tables: 1 + 256 + (256*256).

The number of entries: 256

Exercise 2
Program size=460 Byte
Page size=100 Byte → program size with pages= 5 pages
Main Memory size= 200 Byte → M.M frames number = 2 frames

Number of wasted space =100 -mod (460/100)=40 Byte (internal fragmentation at last page)
The reference chain: 10 11 104 170 73 309 185 245 246 434 458 364 corresponding to the following page numbers:

0 0 1 1 0 3 1 2 2 4 4 3
NB: to find the number of the corresponding page, you have to make the integer division of the reference number by
the size of the page, for example:
For the reference 10: 10/100=0

A) FIFO

Number of page fault is: 6

Page fault rate = 6/12 *100= 50%

B) LRU

 0 0 1 1 0 3 1 2 2 4 4 3

Frame 0 0 0 0 0 0 3 3 3 3 4 4 4

Frame 1 1 1 1 1 1 2 2 2 2 3

 0 0 1 1 0 3 1 2 2 4 4 3

Frame 0 0 0 0 0 0 0 1 1 1 4 4 4

Frame 1 1 1 1 3 3 2 2 2 2 3

Waste calculation formula: page size- (pgm size mod page size)

2

Number of page fault is = 7

Page fault rate =7/12 *100= 58%

C) OPTIMAL

Number of page fault is =5

Page fault rate =5/12 *100= 42%

Exercise 3
1 and 2)

-Several algorithms have been proposed:

-Counter method;

-Stack method;

-Mask method

1) Counter (Index) method:

Let capacity be the number of pages that memory can hold. Let set be the
current set of pages in memory.

2. Mask method

It is an implementation method of the LRU replacement algorithm according to the mask method.

1. Each page is associated with a byte.

 2. The initial value of the mask is one byte (00000000). The most significant bit is set to 1 each time this page is

used.

3. At each period (N ms), a right shift is made of the byte associated with each page.

 0 0 1 1 0 3 1 2 2 4 4 3

Frame 0 0 0 0 0 0 3 3 3 3 3 3 3

Frame 1 1 1 1 1 1 2 2 4 4 4

1- Start traversing the pages.

 i) If set holds less pages than capacity.
 a) Insert page into the set one by one until
 the size of set reaches capacity or all
 page requests are processed.
 b) Simultaneously maintain the recent occurred
 index of each page in a map called indexes.
 c) Increment page fault
 ii) Else
 If current page is present in set, do nothing.
 Else
 a) Find the page in the set that was least
 recently used. We find it using index array.
 We basically need to replace the page with
 minimum index.
 b) Replace the found page with current page.
 c) Increment page faults.
 d) Update index of current page.

2. Return page faults.

3

 4. The victim page is the page with the lowest mask value when the algorithm is launched.

3)

Stack method Counter method Mask method

It is difficult to manage it is easy to update it is easy but requires a shift

(update)

Stack size increases the number of counters increases with

the size of the central memory

by increasing the size of the

main memory we will

increase the number of the

required bytes

Exercise 4

Access Segment Page Offset Result

1. Load data 0 1 1 6145

2. Load data 1 1 10 10

3. Load data 3 3 2047 Page Fault

4. Save data 0 1 4 Protection fault

5. Data storage 3 1 2 2050

6. Save data 3 0 14 28686

7. Jump to the address 1 3 100 16484

8. Load data 0 2 50 Page Fault

9. Read data 2 0 5 Page table fault

10. Jump to the address 3 0 60 Protection Fault

The details :

We have the page size= 2kb= 2*1024=2048 B

Physical address= frame*page size + offset

The access rights must be checked for each case.

LRU algorithm;

Var found: boolean;

Min: integer;

Min← byte-min(number-page-load-mm);

Found← unique-test(min);

If (found) Then {page is unique}

Victim-num ←Selection(min,list-page-load);

Else {page is not unique}

Victim-num ← Selection (min,list-page-load, FIFO);

Finish;

4

1) Access: Load data with: segment=0, page=1 and d=1

From the segment table: the actual page (box)=3

So the physical address= 3*2048+1=6145

2) Access: Load data with: segment=1, page=1 and d=10

From segment table: actual page (frame)=0

So the physical address= 0*2048+10=10

3) Access: Load data with: segment=3, page=3 and d=2047

From segment table: real page (frame)=virtual page is on disk

So: page fault

4) Access: save data with: segment=0 or access is read-only => protection fault

5)) Access: data storage with: segment=3, page=1 and d=2

From the segment table: the actual page (box)=1

So the physical address= 1*2048+2=2050

6)) Access: save data with: segment=3, page=0 and d=14

From the segment table: the actual page (box)=14

So the physical address= 14*2048+14=28686

7)) Access: Jump to the address with: segment=1, page=3 and d=100

From the segment table: the actual page (box)=8

So the physical address= 8*2048+100=16484

8)) Access: Load data with: segment=0, page=2 and d=50

From the segment table: the actual page (frame)=on disk

So: Page Fault

9)) Access: Read data with: segment=2, page=0 and d=5

From the segment table: the page table is not in MC

So: Page table fault

10)) Access: Jump to the address with: segment=3, page=0 and d=60

From the segment table: access is read and write only

So: Protection fault

Exercise 5

a) The translation of a logical address (s,p,d) to a physical address:

5

Page size=4kb=1024*4=4096 byte

logical@: 8212 = 2*4096 + 20

SO :

1. segment = S1 (The third page is in segment 1)

 2. the page number in the segment = 3

3. Offset in the page = 20 (the rest)

S=1- P=3 - Offset=20

4. frame=0 (from array)

5. the displacement in the frame = 20 (the same displacement as the logical address)

C=0 - offset=20

 6. The physical address is therefore 20 in decimal (since the frame number is 0). The physical address is expressed in

16 bits (physical space=64 kB = 216), including 4 bits for the frame number and 12 bits for the displacement in the

frame (4 kB = 212 =210*22), which gives us in binary .

C= 0000 and Offset= 0000 0001 0100

