Mohamed Khider University of Biskra

Faculty of Exact Sciences and Natural and Life Sciences

Department of: Mathematics / Computer science

Module : Machine Structure 2

Level / Year: L1 (2023/2024)

Assignment N° 4: Sequential circuits

Exercise 1:

Consider the following sequential circuit; its Bits of states are Q_1 et Q_0 . We suppose that x does not change during the same clock cycle (synchronous input).

- 1) Give the logical expression of the input of the Flipflop T (T₁) and the input of the Flip-flop D (D₀) using the input x and the Bits of the states Q_1 and Q_0
- 2) Give the Boolean expression of the output S according to the input x and the Bits of the states Q_1 and Q_0

- 3) Give the Boolean expression of the Bits of future states $(Q_1^+ \text{ and } Q_0^+)$ as function of the input x and the Bits of the states Q_1 and Q_0
- 4) Using the obtained results, fill the following state table:

Present state (Q ₁ Q ₀)	Next state $(Q_1^+Q_0^+)$		Output (S)	
	Х		X	
	0	1	0	1
E0=00				
E1=01				
E2=10				
E3=11				

5) Deduce the state diagram of this circuit?

Exercise 2 :

Consider the following state diagram:

1) Write its state table ?

Present state (Q ₁ Q ₀)	Next state $(Q_1^+Q_0^+)$		Output (S)	
	X		X	
	0	1	0	1
E0=00				
E1=01				
E2=10				
E3=11				

2) Study the implementation of this circuit using the Flip-flops T and D?

(Q_{1}^{+}			
Q_1Q_0	00	01	11	10
X=0				
X=1				

D1				
Q_1Q_0	00	01	11	10
X=0				
X=1				

Q_0^+				
Q_1Q_0	00	01	11	10
X=0				
X=1				

T0				
Q_1Q_0	00	01	11	10
X=0				
X=1				

3) Deduce the expression of the output S?

4) Draw the logic circuit for implementing this state machine?

Exercise 3: Consider the sequential circuit defined by its circuit diagram in the below figure; its Bits of states are Q_1 and Q_0 . We suppose that x does not change during the same clock cycle (synchronous input).

- 1) Give the Boolean expression of the input of the flip-flop T and the input of the flip-flop D according to the input « a » and the bits of states Q_1 et Q_0
- Give the logical expression of the output S according to the input « a » and the bits of states Q₁ et Q₀
- 3) Give the Boolean expression of the Bits of future states $(Q_1^+ \text{ and } Q_0^+)$ according to the input « a » and the bits of states Q_1 et Q_0

4) Using the obtained results, fill the following state table:

Present state (Q ₁ Q ₀)	Next state $(Q_1^+Q_0^+)$		Output (S)	
	a		a	
	0	1	0	1
00				
01				
11				
10				

5) Deduce the state diagram of this circuit ?

Exercise 4: A new flip-flop is having behavior as described below:

It has two inputs "x" and "y", when both inputs are same and they are (1,1) the flip-flop is going to set else flipflop resets. If both inputs are different and they are (0,1) the flip-flop complements itself else it is going to retain the last state.

- 1- What is a sequential circuit?
- 2- Find the characteristic expression for this new flip-flop?