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Charge Transport and CurrentCharge Transport and Current
DensityDensity

Consider n particles per unit volume
all moving with velocity v and each
carrying a charge q.

The number of particles, ∆∆N, passing through the (directed) area A in a time

∆∆t is ∆ ∆N nv A t= ⋅r
r

and the amount of charge, ∆∆Q, passing through
the (directed) area A in a time ∆∆t is

∆ ∆Q nqv A t= ⋅r
r

.
The current, I(A), is the amount of charge per unit time passing through the
(directed) area A:

I A
Q

t
nqv A J A( )

r r r r r
= = ⋅ = ⋅

∆
∆ ,

where the "current density" is given by
r r
J nqv drift= .

The current I is measured in Ampere's where 1 Amp is equal to one
Coulomb per second (1A = 1C/s).

For an infinitesimal area (directed) area dA:

dI J dA= ⋅
r r

and
r
J n

dI

dA
⋅ =$ .

The "current density" is the amount of current per unit area and has units of

A/m2.  The current passing through the surface S is given by

I J dA
S

= ⋅∫
r v

.

The current, I, is the "flux" associated with the vector J.

q

A

v
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Electrical Conductivity and OhmsElectrical Conductivity and Ohms
LawLaw

Free Charged Particle:
For a free charged particle in an electric field,

r r r
F ma qE= = and thus

r r
a

q

m
E= .

The acceleration is proportional to the electric field strength E and the
velocity of the particle increases with time!

Charged Particle in a Conductor:
However, for a charged particle in a
conductor the average velocity is
proportional to the electric field

strength E and since 
r r
J nqvave=

we have r r
J E= σ ,

where σσ is the conductivity of the material and is a property of the
conductor. The resistivity ρρ = 1/σσ.

Ohm's Law:

r r
J E= σ

I JA EA= = σ

∆V EL
I

A
L

L

A
I RI= = = 



 =

σ σ
∆∆V = IR (Ohm's Law) R = L/(σσA) = ρρL/A (Resistance)

Units for R are Ohms   1ΩΩ = 1V/1A
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Resistors in Series & ParallelResistors in Series & Parallel

Parallel:
In this case ∆∆V1=∆∆V2=∆∆V
and I=I1+I2.  Hence,

I = I1 + I2 = ∆V1/R1 +

∆V2/R2 = (1/R1+1/R2)∆V

so 1/R = I/∆∆V = 1/R1 + 1/R2,

where I used I1 = ∆V1/R1 and

I2 = ∆V2/R2. Also,

∆V = I1R1 = I2R2 = IR so

I1 = R2I/(R1+R2) and I2 = R1I/(R1+R2).

Resistors in parallel add inverses.

Series:
In this case ∆∆V=∆∆V1+∆∆V2 and I=I1=I2.
Hence,
∆V = ∆V1 + ∆V2 =  I1R1+I2R2 = (R1+R2)I

so R = ∆∆V/I = R1 + R2, where I used

∆V1 = I1R1 and ∆V2 = I2R2.

Resistors in series add.

∆∆VR1 R2

I

∆∆V1

I1 I2

∆∆V2

∆∆V

R1

R2

I

∆∆V1

∆∆V2
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Direct Current (DC) CircuitsDirect Current (DC) Circuits

Electromotive Force:
The electromotive force EMF of a source of electric potential energy is
defined as the amount of electric energy per Coulomb of positive charge as
the charge passes through the source from low potential to high potental.

EMF = εε = U/q   (The units for EMF is Volts)

Single Loop Circuits:
ε - IR = 0  and  I = εε /R

(Kirchhoff's Rule)

Power Delivered by EMF (P = εεI):

dW dq P
dW

dt

dq

dt
I= = = =ε ε ε

Power Dissipated in Resistor (P = I2R):

dU V dq P
dU

dt
V
dq

dt
V IR R R= = = =∆ ∆ ∆

∆∆V

+

EMF

-

I

EMF+ ∆∆V = 0

V

I

R

+

εε
-

I
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DC Circuit RulesDC Circuit Rules

Loop Rule:
The algebraic sum of the changes in
potential encountered in a complete
traversal of any loop of a circuit must be
zero.

∆V i
loop

=∑ 0 .

Junction Rule:
The sum of the currents entering any junction
must be equal the sum of the currents leaving
that junction.

I Ii
in

i
out

=∑ ∑

Resistor:
If you move across a resistor in the direction
of the current flow then the potential change is

∆∆VR = - IR.

Capacitor:
If you move across a capacitor from minus to plus then
the potential change is

∆∆VC = Q/C,

and the current leaving the capacitor is  I = -dQ/dt.

Inductor (Chapter 31):
If you move across an inductor in the direction of
the current flow then the potential change is

∆∆VL = - L dI/dt.

∆∆V

+

EMF

-

I

EMF+ ∆∆V = 0

∆∆V=-IR

I

∆∆V=Q/C

I

Q +

-

∆∆VL=-LdI/dt

I

L
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Charging a CapacitorCharging a Capacitor

After the switch is closed the current is
entering the capacitor so that I = dQ/dt,
where Q is the charge on the capacitor
and  summing all the potential changes in
going around the loop gives

ε − − =IR
Q

C
0 ,

where I(t) and Q(t) are a function of time. If the switch is closed at t=0 then
Q(0)=0 and

ε − − =R
dQ

dt

Q

C
0 ,

which can be written in the form

( )dQ

dt
Q C= − −

1

τ
ε  ,    where I have define  ττ=RC.

Dividing by (Q-εC) and multipling by dt and integrating gives

 ( )
dQ

Q C
dt

Q
t

−
= −∫ ∫ε τ0

0

1
 , which implies  ln

Q C

C

t−
−





 = −

ε
ε τ  .

Solving for Q(t) gives

( )Q t C e t( ) /= − −ε τ1

.

The curent is given by
I(t)=dQ/dt which yields

I t
C
e

R
et t( ) / /= =− −ε

τ
ετ τ

. The quantity ττ=RC is call the time

constant and has dimensions of time.
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Discharging a CapacitorDischarging a Capacitor

After the switch is closed the current is
leaving the capacitor so that I = -dQ/dt,
where Q is the charge on the capacitor and
summing all the potential changes in going
around the loop gives

Q

C
IR− = 0 ,

where I(t) and Q(t) are a function of time. If the switch is closed at t=0 then
Q(0)=Q0 and

Q

C
R
dQ

dt
+ = 0 ,

which can be written in the form
dQ

dt
Q= −

1

τ  ,    where I have defined ττ=RC.

Dividing by Q and multiplying by dt and integrating gives

dQ

Q
dt

Q

Q
t

0

1

0
∫ ∫= −

τ , which implies ln
Q

Q

t

0







 = −

τ .

Solving for Q(t) gives

Q t Q e t( ) /= −
0

τ
.

The current is given by
I(t)=-dQ/dt which yields

I t
Q
RC

e t( ) /= −0 τ
.

The quantity ττ=RC is call the "time constant" and has dimensions of time.
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RL CircuitsRL Circuits
"Building-Up" Phase:
Connecting the switch to position A
corresponds to the "building up" phase of an
RL circuit. Summing all the potential
changes in going around the loop gives

ε − − =IR L
dI

dt
0 ,

where I(t) is a function of time.  If the switch is closed (position A) at t=0
and I(0)=0 (assuming the current is zero at t=0) then

d I

d t
I

R
= − −





1

τ
ε

,    where I have define ττ=L/R.

Dividing by (I-ε/R) and multiplying by dt and integrating gives

 ( )
dI

I R
dt

I
t

−
= −∫ ∫ε τ/0

0

1
 , which implies  ln

/

/

I R

R

t−
−





 = −

ε
ε τ .

Solving for I(t) gives

( )I t
R

e t( ) /= − −ε τ1 .

The potential change
across the inductor is given
by ∆∆VL(t)=-LdI/dt which
yields

∆V t eL
t( ) /= − −ε τ

.

The quantity ττ=L/R is call the time constant and has dimensions of time.

"Collapsing" Phase:
Connecting the switch to position B corresponds to the "collapsing" phase
of an RL circuit.  Summing all the potential changes in going around the

loop gives − − =I R L
d I

d t
0 , where I(t) is a function of time. If the

switch is closed (position B) at t=0 then I(0)=I0 and

d I
d t

I= −
1
τ and I t I e t( ) /= −

0
τ

.
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