
University Mohamed Khider-Biskra

Computer Science Department

1st year Computer Science Degree Chapter 3

ASD2 2023/2024

Linked lists

1 Linear Data Structures

Among the linear data structures there are:

• Arrays,

• Linked lists,

Linear data structures induce a notion of sequence between the component elements (1st, 2nd,

3rd, next, last · · · ).

1.1 Arrays

You already know the linear structure of the array type for which component elements of the

same type are placed contiguously in memory.

To create an array, with 1 or 2 dimensions, you must know its size which cannot be modified

during the program execution, and associate it with an index to browse its elements. For arrays,

the sequence corresponds to the numbers of the cells in the array. We access directly to an

element of the array through its index.

Consider the following 1-dimensional array named T:

12 14 10 24

To reach the third cell of the array it is enough to write T[3] which contains 10, if the values

of the index start at 1.

The array-like structure poses problems for inserting or deleting an element because these

actions require shifting the contents of the array cells which take time in the execution of a

program.

This type of value storage can therefore be expensive in execution time. There is another

structure, called a linked list, to store values, this structure makes it easier to insert and delete

values in a linear list of elements.

1



1.2 Linked lists

A linked list is a linear structure that has no fixed dimension when it is created. Their Elements

of the same type are scattered in memory and linked together by pointers. Its dimension can

be modified depending on the space available in memory. The list is accessible only by its head,

that is to say its first element.

For linked lists, the sequence is implemented by the pointer carried by each element which

indicates the location of the next element. The last element in the list points to nothing (Nil).

We access an element of the list by traversing the elements using their pointers.

Consider the following linked list (@ indicates that the number following it represents an ad-

dress):

 

This is a linked list 

24 8 56 44 Nil 

Address 

Data 

Pointer 

@ : 3 @ : 24 @ : 8 @ : 56 @ : 44 

This is a linked list 

24 8 56 44 Nil 

Address 

Data 

Pointer 

@ : 3 @ : 24 @ : 8 @ : 56 @ : 44 

To access the third element of the list you must always start reading the list with its first

element in whose pointer the position of the second element is indicated. In the pointer of the

second element of the list we find the position of the third element?

To add, delete or move an element, it suffices simply to allocate a place in memory and updates

the element pointers.

There are different types of linked lists:

• Simple linked list consisting of elements linked together by pointers.

• Ordered linked list where the next element is greater than the previous one. Insertion

and deletion of elements is done so that the list remains sorted.

• Doubly linked list where each element has not only one but two pointers pointing to the

previous element and the next element respectively. This allows you to read the list in

both directions, from the first to the last element or vice versa.

• Circular list where the last element points to the first element in the list. If it is a doubly

linked list then first element also points to the last.

These different types can be mixed according to needs.

We use a linked list rather than an array when we need to process objects represented by

sequences on which we must make numerous deletions and numerous additions. The manipu-

lations are then faster than with arrays.

Summary

Structure Dimension Position of Access to information

information

Array Fixed By its index Directly by the index

Linked list Evolves according to By its address Sequentially by the pointer

the actions of each element

2



2 Linked lists

2.1 Definitions

An element of a list is the set (or structure) formed by :

• a data or information,

• a pointer named Next indicating the position of the next element in the list.

Each element is associated with a memory address.

Linked lists use the concept of dynamic variables.

A dynamic variable:

• is declared at the start of the execution of a program,

• it is created there, that is to say, a space is allocated to it to occupy at an address in the

memory,

• it can be destroyed there, that is to say the memory space it occupied is freed,

• access to the value is done using a pointer.

A pointer is a variable whose value is a memory address. A pointer, denoted P , points to a

dynamic variable denoted P ↑.
The base type is the type of the pointed variable.

The pointer type is the set of addresses of the pointed variables of the base type. It is represented

by the symbol ↑ followed by the base type identifier.

Example

 

3 Test Nil 

P P 

Next Info 

The pointer variable P points to the memory space P ↑ with address 3. This memory cell

contains the value ”Test” in the Info field and the special value Nil in the Next field. This field

will be used to indicate what the next element is when the cell will be part of a list. The Nil

value indicates that there is no next item. P ↑ is the object whose address is stored in P .

Linked lists result in the use of procedures of dynamic allocation and release of memory. These

procedures are as follows:

• Allocate(P ) or New(P ): reserves a memory space P ↑ and gives the address of this

memory space as value to P . We allocate memory space for an element pointed to by P .

3



• Deallocate(P ) or Free(P ): frees the memory space which was occupied by the element

to be deleted P ↑ on which P points to.

To define the variables used in the example above, you must:

• define the type of list of elements:

Type Cell = Record

Info: String;

Next : List;

End;

• define the pointer: Type List =↑ Cell;

• declare a pointer variable: Var P : List;

• allocate a memory cell which reserves space in memory and gives P the value of the

address of the memory space P ↑: Allocate(P );

• assign values to the memory space P ↑:

P ↑ .Info←− “Test”; P ↑ .Next←− Nil;

When P = Nil then P points to nothing.

2.2 Simple linked lists

A simple linked list is composed of:

• a set of elements such that each:

– is stored in memory at a certain address,

– contains data (Info),

– contains a pointer, often named Next, which contains the address of the next element

in the list,

• a variable, called Head, containing the address of the first element of the linked list.

The last element pointer contains the value Nil. In the case of an empty list the pointer of the

header contains the value Nil. A list is defined by the address of its first element.

Before writing algorithms manipulating a linked list, it is useful to show graphically a diagram

representing the organization of the elements of the linked list.

Example Let’s consider the following list of integers: 12, 14, 10, 24. The corresponding linked

list could be:

The 1st element of the list is 12 at address 3 (start of the linked list)

4



 3 

12 

4 

@ : 3 

14 

2 

@ : 4 

10 

1 

@ : 2 

24 

Nil 

@ : 1 

Head 

The 2nd element of the list is 14 at address 4 (because the pointer of the cell at address 3 is

equal to 4)

The 3rd element of the list is 10 at address 2 (because the pointer of the cell at address 4 is

equal to 2)

The 4th element of the list is 24 at address 1 (because the pointer of the cell at address 2 is

equal to 1)

If P has the value 3 If P has the value 2

P ↑ .Info has a value of 12 P ↑ .Info has a value of 10

P ↑ .Next has a value of 4 P ↑ .Next has a value of 1

2.3 Basic processing of the use of a simple linked list

You must start by defining a type of variable for each element of the list. In algorithmic, this

is done as follows:

Type

List =↑ Element;

Element =Record

Info: string;

Next : List;

End;

Var Head, P : List;

The type of Info depends on the values contained in the list: integer, character string, varying

for some type...

Generally, treatments of lists are as follows:

• Creating a list;

• Inserting an element;

• Deleting an element;

• Modifying an element;

• Traversing a list;

• Searching for a given value in a list.

5



2.3.1 Creating a linked list composed of two elements of string type

Declaration

Type

List =↑ Element;

Element =Record

Info: string;

Next : List;

End;

Algorithm Create List of Two Elements;

Var

Head, p : List;

Begin

Head← Nil; /*for the moment, the list is empty*/

New(p); /*allocate a memory space for the first element*/

Read(p ↑ .Info); /*save in the field Info of the element pointed by p the entered value*/

p ↑ .Next← Nil; /*there is not a next element*/

Head← p; /*Head points to p ↑*/

/*We must now add the 2nd element; i.e, insert an element at the head of the list */

New(p); /*allocate a memory space for the second element*/

Read(p ↑ .Info); /*save in the field Info of the element pointed by p the entered value*/

p ↑ .Next← Head; /*the element is inserted in the head of the list*/

Head← p;

End.

2.3.2 Create a linked list composed of several string elements

Type declarations for the list:

Type

List =↑ Element;

Element = Record

Info: string;

Next : List;

End;

To create a linked list containing a number of elements to be specified by the user, it suffice to

introduce two variables NumberElt (Number of Elements) and Counter of type Integer.

• Allow the user to enter the value of NumberElt at the beginning,

• Write a loop for Counter going from 1 to NumberElt including the above four instruc-

tions.

6



Algorithm Create List of Known Number of Elements;

Var

Head, p : List;

NumberElt, Counter : Integer;

Begin

Read(NumberElt);

Head← Nil;

For Counter ← 1 to NumberElt do

New(p); /*allocate a memory space for the element to be added*/

Read(p ↑ .Info); /*save in the field Info of the element pointed by p the entered value*/

p ↑ .Next← Head; /*the element is inserted in the head of the list*/

Head← p; /*The pointer Head points now on p*/

End For

End.

To create a linked list containing an unknown number of elements you must:

• declare a reading variable of the same type as that of the information carried by the list,

• determine and indicate to the user the value he must enter to announce that there is no

longer element to add in the list (for example, ”XXX”),

• write a While loop to execute the above four instructions as long as the value entered by

the user is different from the value indicating the end of elements addition.

Algorithm Create List of Unknown Number of Elements;

Var

Head, p : List;

Resp : String;

Begin

Head← Nil;

Read(Resp);

While Resp 6= ”XXX” do

New(p); /*allocate a memory space for the element to be added*/

p ↑ .Info← Resp; /*save in the field Info of the element pointed by p the entered value*/

p ↑ .Next← Head; /*the element is inserted in the head of the list*/

Head← p; /*The pointer Head points now on p*/

Read(Resp);

End While

End.

2.3.3 Display elements of a linked list

A simple linked list can only be traversed from the first to the last element.

The algorithm is given as a procedure which receives the head of the list as a parameter.

7



Procedure Display List (p : List);

Begin

p← Head; /*p points on the 1st element of the list*/

While p 6= Nil do /*We traverse the list as long as the address of the next element is not Nil*/

Write(p ↑ .Info); /*display the value contained at the address pointed by p*/

p← p ↑ .Next; /*We move on to the next element*/

End While

End;

2.3.4 Find a given value in an ordered linked list

In this example we take the case of a linked list containing elements of type string, but it could

be any other type, depending on the one determined when the list was created (remember that

all elements of a linked list must have the same type). The list will be traversed from its first

element (the one pointed to by the head pointer). He has two termination cases:

• having found the value of the element,

• have reached the end of the list.

The algorithm is given in the form of a procedure which receives the head of the list as a

parameter and the searched value.

8



Procedure SearchValueList (Head : List, V al: String);

Var

p : List;

Find: Boolean;

Begin

If Head 6= Nil then

p← Head;

Find← False;

While p 6= Nil and Not(Find) do

If p ↑ .Info = V al Then

Find← True;

Else

p← p ↑ .Next;

End If

End While

If Find Then

Write (”The Value”, V al,” is in the list”);

Else

Write (”The Value”, V al,” is not in the list”);

End If

Else

Write (”The list is empty”);

End If

End;

2.3.5 Manipulation in C language

Before using dynamic memory allocation, you should include the library stdlib.h

#include <stdlib.h>

Algorithm C Program

Var p :↑basic type basic type* p;

New(p); p =(castType*) malloc(size);

free(p); free(p);

9



University Mohamed Khider-Biskra

Computer Science Department

1st year Computer Science Degree Chapter 4

ASD2 2023/2024

Abstract Data Types:
Stacks and Queues

1 Abstract vs Concrete data type

In computer science, an abstract data type (ADT) is a mathematical model for data types,

defined by its behavior (semantics) from the point of view of a user of the data, specifically

in terms of possible values, possible operations on data of this type, and the behavior of these

operations. This mathematical model contrasts with data structures or concrete data types,

which are concrete representations of data, and are the point of view of an implementer, not a

user.

ADTs are a theoretical concept, used in formal semantics and program verification and, less

strictly, in the design and analysis of algorithms, data structures, and software systems. Most

mainstream computer languages do not directly support formally specifying ADTs. However,

various language features correspond to certain aspects of implementing ADTs, and are easily

confused with ADTs proper; these include abstract types, opaque data types, protocols, and

design by contract. For example, in modular programming, the module declares procedures that

correspond to the ADT operations, often with comments that describe the constraints. This

information hiding strategy allows the implementation of the module to be changed without

disturbing the client programs, but the module only informally defines an ADT. The notion of

abstract data types is related to the concept of data abstraction.

In our course, we are mainly interested with two ADTs: Stacks and Queues.

2 Stacks

Stack is a linear data structure that follows a particular order in which the operations are

performed. The order may be LIFO(Last In First Out) or FILO(First In Last Out). LIFO

implies that the element that is inserted last, comes out first and FILO implies that the element

that is inserted first, comes out last.

What is Stack Data Structure?

A stack is a linear data structure that follows the Last-In-First-Out (LIFO) principle. It behaves

like a stack of plates, where the last plate added is the first one to be removed.

1



2.1 Basic Operations of Stack Data Structures

• Push: Adds an element to the top of the stack.

• Pop: Removes the top element from the stack.

• Peek (or Top): Returns the top element without removing it.

• IsEmpty: Checks if the stack is empty.

• IsFull: Checks if the stack is full (in case of fixed-size arrays).

2.2 Applications of Stack Data Structures

• Recursion

• Expression Evaluation and Parsing

• Depth-First Search (DFS)

• Undo/Redo Operations

• Browser History

2.3 Implementation

Stacks may be implemented in two different manners: by arrays or by linked lists.

2.3.1 Implementation by arrays

The static implementation of stacks uses arrays. In this case, the number of elements that the

stack may contains (its capacity) is limited by the size of the array. Adding to the stack is done

in the ascending direction of the indices, while removal is done in the opposite direction.

2



2.3.2 Implementation by linked lists

The dynamic implementation uses linear lists. In this case, the stack can be empty, but can

never be full, except of course in the case of insufficient memory space. Adding and removing

elements in dynamic stacks is done at the head of the list.

The following two algorithms present static and dynamic implementation examples of stacks.

3



Algorithm Static Stack;

Const N = 20; /*for example, the capacity is 20 element*/

Type Stack = Record

S: Array[N] of element type;

Top : Integer;

End;

Var p : Stack;

Procedure InitStack(var p : Stack);

Begin

p.Top← 0;

End;

Function Is empty(p : Stack): Boolean;

Begin

Is empty ← (p.Top = 0);

End;

Function Is full(p : Stack): Boolean;

Begin

Is full ← (p.Top = N);

End;

Procedure Push(x : type element, var p : Stack);

Begin

If Is full(p) Then

Write(”The stack is full”);

Else

p.Top← p.Top + 1;

p.S[p.Top]← x;

EndIf

End;

Procedure Pop(var x : type element, var p : Stack);

Begin

If Is empty(p) Then

Write(”The stack is empty”);

Else

x← p.S[p.Top];

p.Top← p.Top− 1;

EndIf

End;

Begin

· · · Use of the stack · · ·
End.

4



Algorithm Dynamic Stack;

Type Element = Record

V al: type element;

next :↑ Element;

End;

Stack :↑ Element;

Procedure InitStack(p : Stack);

Begin

p← Nil;

End;

Function Is empty(p : Stack): Boolean;

Begin

Is empty ← (p = Nil);

End;

Procedure Push(x : type element, var p : Stack);

Var l :↑ Element;

Begin

New(l);

l ↑ .V al← x;

l ↑ .next← p;

p← l;

End;

Procedure Pop(var x : type element, var p : Stack);

Var l :↑ Element;

Begin

If Is empty(p) Then

Write(”The stack is empty”);

Else

x← p ↑ .V al;

l← p;

p← p ↑ .next;
free(l);

EndIf

End;

Begin

· · · Use of the stack · · ·
End.

5



3 Queues

A Queue Data Structure is a fundamental concept in computer science used for storing and

managing data in a specific order. It follows the principle of ?First in, First out? (FIFO), where

the first element added to the queue is the first one to be removed. Queues are commonly used

in various algorithms and applications for their simplicity and efficiency in managing data flow.

What is Queue in Data Structures?

A queue is a linear data structure that follows the First-In-First-Out (FIFO) principle. It

operates like a line where elements are added at one end (rear) and removed from the other

end (front).

3.1 Basic Operations of Queue Data Structure

• Enqueue (Insert): Adds an element to the rear (or tail) of the queue.

• Dequeue (Delete): Removes and returns the element from the front (head) of the queue.

• Peek (or First): Returns the element at the front of the queue without removing it.

• isEmpty: Checks if the queue is empty.

• isFull: Checks if the queue is full.

3.2 Applications of Queue

• Task scheduling in operating systems

• Data transfer in network communication

• Simulation of real-world systems (e.g., waiting lines)

• Priority queues for event processing queues for event processing

6



3.3 Implementation

As for stacks, queues may be also represented either statically by arrays or dynamically by

linked lists.

3.3.1 Implementation by arrays

Static implementation can be done by shifting using an array with a fixed head, always at 1,

and a variable tail. It can also be carried out by flow using a circular array where the head and

tail are both variable.

1. By shifting

• the queue is empty if tail = 0.

• the queue is full if tail = N .

• shifitng problem at each Dequeue.

2. By flow: The queue is represented by a circular array.

• the queue is empty if head = tail.

• the queue is full if (tail + 1) mod N = head.

• We sacrifice a cell to distinguish the case of an empty queue from that of a full one.

3.3.2 Implementation by linked lists

The dynamic representation uses a linear linked list. Enqueue is done at the head of the list

and dequeue moves to the tail. The queue, in this case, can become empty, but it will never be

full.

The two following algorithms present examples of static and dynamic implementations of

queues.

7



Algorithm Static Queue by flow;

Const N = 20; /*for example, the capacity is 20 element*/

Type queue = Record

T : Array[N] of element type;

head, tail : Integer;

End;

Var q : queue;

Procedure InitQueue(var q : queue);

Begin

q.head← 1; q.tail← 1;

End;

Function Is empty(q : queue): Boolean;

Begin

Is empty ← (q.head = q.tail);

End;

Function Is full(q : queue): Boolean;

Begin

Is full ← ((q.tail + 1) mod N = q.head);

End;

Function Peek(q : queue): element type;

Begin

If Is empty(q) Then

Write(”The queue is empty”);

Else

Peek ← q.T [q.head];

EndIf

End;

Procedure Enqueue(x : element type, var q : queue);

Begin

If Is full(q) Then

Write(”The queue is full”);

Else

q.T [q.tail]← x;

q.tail← (q.tail + 1) mod N ;

EndIf

End;

Procedure Dequeue(var x : element type, var q : queue);

Begin

If Is empty(q) Then

Write(”The queue is empty”);

Else

8



x← p.T [q.head];

q.head← (q.head + 1) mod N ;

EndIf

End;

Begin

· · · Use of the Queue · · ·
End.

9



Algorithm Dynamic Queue;

Type Element = Record

V al: element type;

next :↑ Element;

End;

queue = Record

head, tail :↑ Element;

End;

Procedure InitQueue(var q : queue);

Begin

q.head← Nil; q.tail← Nil;

End;

Function Is empty(q : queue): Boolean;

Begin

Is empty ← (q.head = Nil);

End;

Function Peek(q : queue): element type;

Begin

If Is empty(q) Then

Write(”The queue is empty”);

Else

Peek ← q.head ↑ .V al;

EndIf

End;

Procedure Enqueue(x : element type, var q : queue);

Var l :↑ Element;

Begin

New(l);

l ↑ .V al← x;

l ↑ .next← Nil;

If q.tail = Nil Then

q.head← l;

Else

q.tail ↑ .next← l

EndIf

q.tail← l;

End;

Procedure Dequeue(var x : element type, var q : queue);

var l :↑ Element;

Begin

If Is empty(p) Then

10



Write(”The queue is empty”);

Else

x← q.head ↑ .V al;

l← q.head;

q.head← q.head ↑ .next;
free(l);

EndIf

End;

Begin

· · · Use of the Queue · · ·
End.

11




