

Mohamed Kheider Biskra University

Faculty of Natural and Life Sciences

Computer science department

Course materials

Module: Operating Systems I

Chapter 4: Input/Output Management

Level: 2LMD

Module Leader: Dr. D. Boukhlouf

2024/2023 Academic Year

Chapter 4: Input/Output Management

OS1 Course: Dr. D.Boukhlouf 2

1. Introduction

One of the main functions of an operating system is to control all I/O devices on the computer. It must

issue commands to devices, intercept interruptions and manage errors. It also provides a simple interface

between the peripherals and the rest of the system. As far as possible, the interface must be the same for all

devices (device independence).

2. Interruption mechanisms:

2.1 Definition and Principle:

An interrupt is a mechanism that allows to interrupt the execution of a process following an external or

internal event and to pass the control to a routine called "interrupt routine" (dealing with interrupt or

interrupt handler).

Interruptions can come from a variety of sources, but they are generally classified into three main types:

External (process independent): operator interventions, failures, etc.

CPU Internal Clamp Diversion: Overflow, dividing by zero, invalid memory accesses, Page Default

(causes that cause a disk backup of the memory image) etc.

System calls: such as input-output requests.

When the interruption occurs the processor, after completion of the current instruction, gives control to the

interrupt routine associate with the event. It first saves the context of the interrupted process before

processing. At the end of the process, the context of the interrupted process is restored, allowing it to

continue its execution properly at the place where it was interrupted.

2.2 Interrupt Vector:

When an interrupt signal arrives, it changes the status of an indicator (flag or flag) that is regularly tested by

the CPU. Once the signal is detected, the cause of the interruption must be determined. For this we use an

indicator, for the different causes of interruption. This indicator is used to access an interrupt vector that

links to each interrupt type the address of the corresponding interrupt routine. An interrupt vector therefore

has the following structure:

…..
…..
…..

Save Context

Treatment
interrupt

Restore context

process

Interrupt routine

Interruption

Chapter 4: Input/Output Management

OS1 Course: Dr. D.Boukhlouf 3

Example: IBM PC Case:

The IBM PC interrupt vector can have 256 entries each corresponding to a cause of interruption.

Interruptions can fall into three categories: diversions, hardware interruptions and software interruptions.

There are 6 diversions involving:

 The division by zero

 Step by step operation (an interrupt is generated for each instruction)

 Problems that may appear when accessing memory (page default, for example)

 Reaching a breakpoint

 The digital overflow

 Failure to recognise an instruction

There are 16 physical interrupts. They are called IRQ (Interrupt ReQuest) 0 to 15. Some are pre-filled, but

many are only assigned to peripheral events when the machine is configured. Here are some of them (Linux

system):

Software interruptions use the same mechanism, except that they are generated by specific instructions that

allow you to call BIOS or operating system functions without knowing their implementation addresses,

which may vary from one version to another.

Chapter 4: Input/Output Management

OS1 Course: Dr. D.Boukhlouf 4

During the occurrence of an interruption, or diversion, the processor receives an index that points to the

interrupt vector. This index is generated by the processor in the case of diversions.

It is provided by a motherboard circuit called an interrupt controller in the case of a hardware interruption

and by the instruction in the case of a software interruption. In view of this index, the processor accesses the

corresponding input of the interrupt table.

2.3 Prioritization and masking of interruptions:

A hierarchy of interruption priorities can be considered. Thus, when several interruptions occur at the same

time, the highest priority is taken care of first. This also implies that the routine itself of an interruption can

be interrupted by a higher priority interruption (see figure: Cascading interruptions).

Maskable Interrupt: A supervisor process can hide an interruption. To hide an interruption is to delay its

effect temporarily. She can be exposed later.

Non Maskable Interrupt: An interrupt that cannot be disabled or ignored by the instructions of CPU are

called as Non-Maskable Interrupt. A Non-maskable interrupt is often used when response time is critical or

when an interrupt should never be disable during normal system operation.

3. Physical Aspects of Inputs/Outputs
3.1 Device Controller

Each device is connected to the computer via a special electronic card called a device controller. The

following figure illustrates a "classical" architecture of material.

An I/O device actually contains two parts: a device (keyboard, screen, disk, etc.) and a device controller.

The controller serves as the interface between the device and the processor: it receives requests from the

processor and transforms them into commands for the device, and vice versa, it sends requests from the

device to the processor. It also handles transfers between processors and the device. The main requests a

…..
…..
…..

Save Context

Treatment
interrupt

Restore context

process

Interrupt routine

Interruption

Save Context

Treatment
interrupt

Restore context

Interrupt routine

Chapter 4: Input/Output Management

OS1 Course: Dr. D.Boukhlouf 5

processor sends to a device are read and write. Depending on the device these queries can correspond to

simple or complex commands.

There are two main categories of devices considered: character-based devices and block-based devices.

 In a block device, information can only be accessed by blocks and each block has an address (example: the

disk).

 In a character-based device, you can of course access character-by-character information (for example: the

keyboard) but you cannot specify an address or search for information: you simply receive or send a flow of

characters.

A controller generally has:

 a buffer zone,

 control bits: state bit (ready, busy), and command bit (read, write).

3.2 Direct access to memory (DMA)

A "DMA coupler" (DMA: Direct Memory Access) is a particular type of controller that is capable of

transferring data directly from memory to a device (or vice versa) without that data passing through the

CPU. So the use of the DMA relieves the CPU of an important part of the control and execution work of the

I/O. The programming of a DMA coupler is done, as for a controller by writing data in "registers". This time

we need at least three components:

 the address of the start of the memory area to be transferred,

 the length of the memory area to be transferred,

 the command word/status.

3.3 Drivers

Each device controller has specific controls. Since an OS designer cannot include all controls for all devices
in their software, there are different software layers to interface between the OS and the devices. From the
OS’s point of view, devices only need to be read or written, which is the highest level interface. Then, the
way to access a device differs depending on whether it is a device in blocks (several independently
addressable blocks) or characters (character flow); there is therefore a low-level interface for both types of
devices. Finally, the lower-level software layer is device-specific: it translates general device commands by
blocks or characters into commands specific to the target device. This last software layer is called a driver; it
is usually provided by the device manufacturer and is inserted into the OS.

5.3 The different physical input/output modes:

The basic principle used for the exchange of data between two physical constituents is represented by the

following figure. Apart from the actual data, two additional links are necessary, to enable the transmitter of

the data to signal the actual presence of this data on the corresponding wires, and to enable the receiver to

signal that it has read the data.

Several input-output modes have been proposed in computer systems:

 programmed I/O,

 interrupt initiated I/O,

 I/O with DMA access.

 Input/Output Processor

5.3.1 Programmed input-output (with scanning)

Chapter 4: Input/Output Management

OS1 Course: Dr. D.Boukhlouf 6

The programmed I/O was the simplest type of I/O technique for the exchanges of data or any types of

communication between the processor and the external devices. With programmed I/O, data are exchanged

between the processor and the I/O module. The processor executes a program that gives it direct control of

the I/O operation, including sensing device status, sending a read or write command, and transferring the

data. When the processor issues a command to the I/O module, it must wait until the I/O operation is

complete. If the processor is faster than the I/O module, this is wasteful of processor time.

Critical : With this mode, throughput is often limited to 50 KB/s (Kilobytes per second). Moreover, if the

device is slow, the processor is monopolized for the duration of the exchange. In this case, you only read a

few bytes at a time to avoid this monopolization. This form of exchange was the only one possible in the

first generations of machines. In summary:

 the CPU is slowed to the speed of the device,
 the CPU executes an active standby loop instead of which it could perform calculations on behalf of

other programs.

5.3.2 Interrupt initiated I/O

 To avoid monopolization of the processor throughout the I/O, a first improvement was made thanks to the

interrupt mechanism. The interrupt facilities and special commands inform the interface for issuing an

interrupt request signal as soon as the data is available from any device. In the meantime, the CPU can

execute other programs, and the interface will keep monitoring the i/O device. Whenever it determines that

the device is ready for transferring data interface initiates an interrupt request signal to the CPU. As soon as

the CPU detects an external interrupt signal, it stops the program it was already executing, branches to the

service program to process the I/O transfer, and returns to the program it was initially running.

Chapter 4: Input/Output Management

OS1 Course: Dr. D.Boukhlouf 7

5.3.3 Direct Memory Input-Output

To increase the potential output throughput of the I/O, and decrease the CPU monopolization discussed

above, another solution was to shift some functionality into the device that connects the device to the bus, so

that it can store data from the device directly in memory in the case of a read, or directly extract that data

from memory in the case of a write. This is called direct access to memory.

Steps in a DMA transfer:

Chapter 4: Input/Output Management

OS1 Course: Dr. D.Boukhlouf 8

5.3.4 Input/output Processor

It is a processor with direct memory access capability that communicates with IO devices. IOP is similar to

CPU except that it is designed to handle the details of IO operation. Unlike DMA which is initialized by

CPU, IOP can fetch and execute its own instructions. IOP instructions are specially designed to handle IO

operation.

Chapter 4: Input/Output Management

OS1 Course: Dr. D.Boukhlouf 9

5.4 Synchronous - asynchronous inputs/outputs

Depending on the transfer mode used, the input-output mode can be synchronous or asynchronous:

- An I/O operation is said to be synchronous if the processor must wait until the end of the I/O operation to

continue its processing; it is also said that in this case the transfer is blocking.

- An I/O operation is called asynchronous if the processor can start the operation and perform other tasks in

parallel. It will be informed of the end of the I/O operation by an interrupt.

5.5 Device drivers

A driver is a program that manages a device. Each controller has one or more control registers. The device

drivers send these commands and check their path. The disk driver, for example, is the only part of the OS

that knows the registers of a given disk controller and their use. It is the only one who knows the sectors, the

tracks, the cylinders, the heads, the movement of the arm, the positioning time of the heads and all the other

mechanisms that allow the disc to function properly.

In general, a device driver must handle higher-level queries emanating from the software (independent of

hardware) located above it.

The first step for a pilot is to translate an I/O request into concrete terms. A disk driver must, for example,

determine where the required block is and check if the disk motor is rotating, if the arm is positioned

properly, etc. In summary, it must determine the operations that the controller must perform and the order in

which they must be performed. After this step, the pilot completes the controller logs to have these controls

executed.

