Level: 2LMD Module: Operating Systems 1 Date: 27/05/2023 from 12:00 to 13:30

Exam

Exercise 1 (4 marks)

Consider a paging system with a page size of 1KB, the user memory (physical memory) is 4KB.

- 1- How many frames (physical pages) are initially available for the execution of processes?
- 2- Suppose a program of size 8KB, which refers to the logical addresses:
- 1, 2076, 85, 1500, 3648, 100, 4314, 1025, 89, 5741, 1219, 4500, 7658, 4096, 6999, 7191, 5140, 128
 - Give the number of pages that contains this program
 - Calculate the couple (p, offset) associated with each memory reference, deduce the associated references sequence?
- 3- Give the page faults rate induced by a replacement FIFO, LRU, LFU, what is the best algorithm?

Exercise 2 (8 marks)

Consider a system where the memory adopts the paged segmentation method. The page size is 400 B and the segment size is maximum 1200 B. A process, of size 5600 B, needs to execute on the system. This process contains 2000 B as the main program, 1100 B as libraries, 1500 B as functions and 1000 B as data.

- 1. Say how this process will be partitioned in order to be loaded in the memory (i.e. division in to segments and pages).
- 2. Was there any internal fragmentation? How many bytes?
- 3. Construct the segments and pages tables of this process, in the case knowing that the list of free frames is the following: {22, 40, 6, 51, 52, 7, 9, 11, 402, 223, 17, 30, 100, 31, 36, 55, 77, 78, 79, ...} **PS**: the process is loaded in the order: main program, libraries, functions then data.
- 4. If the memory word size is 1 byte, how many bits do we need to code the offset?
- 5. Suppose that the logical address is coded on 16 bits, the segment number takes 3 bits. How many bits remain for the page number?
- 6. Give the physical addresses corresponding to the following binary logical addresses, and say what type is this word (code in main program or data ...)?
- a) 00000101 10001111
- b) 01100010 00001110
- c) 01000000 11110000
- d) 10100011 10001100

Exercise 3 (5 marks)

- 1. A CPU-scheduling algorithm determines an order for the execution of its scheduled processes. Given n processes to be scheduled on one processor, how many different schedules are possible? Give a formula in terms of n.
- 2. What are the advantages and disadvantages of choosing a small quantum for the Round Robin scheduling algorithm?
- 3. What is the interest of multi-level scheduling?

4. Consider the following processes:

Process	Arrival time	Burst time	Priority
P1	0	10	2
P2	0	15	3
P3	3	8	4
P4	10	18	5

It is assumed that a scheduling with priority algorithm is used (priorities are increasing: 5 is the highest priority).

- a- Draw the Gantt chart for the priorities given in the table.
- b- We would like the priority of processes to be dynamic over time. Thus, to calculate the priority of a process, we use the following formula: Priority= (Waiting Time + CPU Remaining Time)/ CPU Time
- Give the Gantt chart knowing that the priority is recalculated every 5 minutes.
- c- Calculate the average wait time as well as the average turnaround time.
- d- Compare the results obtained with those obtained with the classic priority algorithm.

Note: When calculating, the following example will be rounded: $3.5 \text{ or } 3.6 \rightarrow 4, 3.1 \text{ or } 3.4 \rightarrow 3.$

Exercise 4 (3 marks)

1. Classify in a table the following operations according to their interrupt type:

Overflow, failures, dividing by zero, moving a mouse, invalid memory accesses, Page fault, inputoutput requests, key pressed, access to a privilege memory area.

- 2. What are the components of the device controller?
- 3. What is the disadvantage of the programmed I/O mode?
- 4. What are the differences between synchronous and asynchronous input-output?

Good Luck