MKUB, Level: 2LMD Module: Operating Systems 1 Duration: 45 min 04/05/2023

Test 2 Solution

Exercise 1 (6 marks=1+1+1+1+2):

1. How many page frames are in physical memory?

Number of page frames = Physical mem size/frame size= 2*2³⁰/ 2⁶* 2¹⁰ = 2¹⁵ frame

2. What is the bit size of a page table entry?

Size of a PT input = number of bits to encode a frame + 1 presence bit

- = 15 + 1 = 16 bits
- 3. What is the number of entries in the page table?

Number of entries in the PT = Size of the PT / size of an entry in the PT = 128 Ko / 16

- $= 2_7 * 2^{10} * 2_3 / 2_4 = 2^{16}$ entries
- 4. What is the size of the virtual memory of this architecture?

Virtual mem size = number of pages * size of a page

- = Number of entries in the PT * size of a page
- $= 2^{16} * 2^{16} = 2_{32}$ octets = 4Go
- 5. Consider the following two logical addresses expressed in decimal: 1024 and 65540.

Give the corresponding physical addresses (expressed in decimal).

logical @= 1024

page size =
$$2^{16} = 65536$$
; page $n^{\circ} = 0$; offset = 1024; frame $n^{\circ} = 0$

physical @ = 0*65536 + 1024 = 1024

logical @= 65540; Taille page = 2^{16} = 65536; page n° = 1; offset = 4

For page 1, the presence/absence bit =0, hence the page is not loaded into memory.

We cannot know the physical address.

Exercise 2 (6 marks=1+1+1+1+1+1):

1. Perform the access sequence with the replacement strategies FIFO, Optimal, and LRU with a memory capacity of 4 frames, and repeat FIFO with 5 frames. Calculate page fault and page fault rate in each case.

135424321053504354321345

a. FIFO (with 4 frames)

Requests:	1	3	5	4	2	4	3	2	1	0	5	3	5	0	4	3	5	4	3	2	1	3	4	5
Page 1:	1	1	1	1	2	2	2	2	2	2	2	3	3	3	3	3	3	3	3	3	3	3	3	5
Page 2:		3	3	3	3	3	3	3	1	1	1	1	1	1	4	4	4	4	4	4	4	4	4	4
Page 3:			5	5	5	5	5	5	5	0	0	0	0	0	0	0	0	0	0	2	2	2	2	2
Page 4:				4	4	4	4	4	4	4	5	5	5	5	5	5	5	5	5	5	1	1	1	1

page fault = 13, page fault rate= $13\24 = 54\%$

b. FIFO (with 5 frames)

Requests:	1	3	5	4	2	4	3	2	1	0	5	3	5	0	4	3	5	4	3	2	1	3	4	5
Page 1:	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Page 2:		3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1	1	1	1
Page 3:			5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	3	3	3
Page 4:				4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	5
Page 5:					2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2

page fault = 9, page fault rate= $9\24 = 37\%$

c. LRU (with 4 frames)

Requests:	1	3	5	4	2	4	3	2	1	0	5	3	5	0	4	3	5	4	3	2	1	3	4	5
Page 1:	1	1	1	1	2	2	2	2	2	2	2	3	3	3	3	3	3	3	3	3	3	3	3	3
Page 2:		3	3	3	3	3	3	3	3	3	5	5	5	5	5	5	5	5	5	5	1	1	1	1
Page 3:			5	5	5	5	5	5	1	1	1	1	1	1	4	4	4	4	4	4	4	4	4	4
Page 4:	5			4	4	4	4	4	4	0	0	0	0	0	0	0	0	0	0	2	2	2	2	5

page fault = 13; page fault rate = $13 \cdot 24 = 54\%$

d. Optimal (with 4 frames)

page fault = 9, page fault rate = $9 \cdot 24 = 37\%$

2. What is the key message of Belady's anomaly?

FIFO result in worse results for certain access sequences with a bigger memory.

3. Why is it impossible to implement the optimal replacement strategy?

Because it is not possible to predict the future and therefore the future request sequence is unknown.