

DR. KATIA SIDI AHMED MOHAMED KHIDER UNIVERSITY OF BISKRA SCIENCE AND TECHNOLOGY FACULTY COMMON CORE IN SCIENCE AND **TECHNOLOGY**

KATIA.SIDIAHMED @UNIV-BISKRA.DZ

Januray 2024

Table of contents

I- Chapter I: Dimensional analysis and Vector calculus 4

I

Chapter I: Dimensional analysis and Vector calculus

Physics describes material and space, their properties and their behaviour. Measurable properties are called **PHYSICAL DIMENSIONS.** When their measurement is expressed by a simple number, we speak of a **scalar quantity**. When a set of several numbers (vectors) is required to represent them, they are referred to as **vector quantities**.

 A. Dimensional Analysis

 1. Fundamental (primary/basic) physical quantities

The International System (IS) is made up of the units of the rationalised MKSA system (m: metre, kg: kilogram, s: second and a: ampere) and includes additional definitions for the unit of temperature and the unit of luminous intensity.

 \mathcal{L}

 $\mathcal{L}_{\mathcal{A}}$

4

 2. Derived (secondary) physical quantities

These are quantities whose definitions are based on other physical quantities (base quantities)

 B. Vector calculation

In physics, a number or numerical function uses vectors to model quantities that cannot be completely defined alone. For example, to specify a displacement, velocity, force or electric field, direction and sense are essential. Vectors are the opposite of scalar quantities described by a simple number, such as mass, temperature, etc.

$$
\vec{OM} = x\vec{i} + y\vec{j} + z\vec{k}
$$

 1. The scalar product

Definition

The scalar product is an algebraic operation in addition to the laws that apply to vectors. It associates two vectors with their product, which is a number (or scalar, hence the name). It allows you to exploit traditional Euclidean geometry concepts: lengths, angles, orthogonality.

Let $v = (v_{1,} v_{2,} v_{3})$ and $w = (w_{1,} w_{2,} w_{3})$ be vectors in R3. The dot product of v and w, denoted by v.w, is given by:

$$
v \cdot w = v_1 w_1 + v_2 w_2 + v_3 w_3
$$

Similarly, for the vectors $v = (v_1, v_2)$ and $w = (w_1, w_2)$ in \mathbb{R}^2 , the dot product is

$$
v \cdot w = v_1 w_1 + v_2 w_2
$$

a) Theorem

Let v,w be nonzero vectors, and let θ be the angle between them, then:

$$
\theta \circ s = (\nu \cdot w) / \|\nu\| \|w\|
$$

b) Corollary

If θ is the angle between nonzero vectors v and w then:

$$
v.w is = \begin{cases} > 0 \; \text{for} \; 0^{\circ} \leq \theta < 90^{\circ} \\ 0 \; \text{for} \; \theta = 90^{\circ} \\ < 0 \; \text{for} \; 90^{\circ} < \theta \leq 90^{\circ} \end{cases}
$$

c) Theorem Basic Properties of the scalar product

 $\mathcal{L}^{\mathcal{L}}$

N.

For any vectors u, v, w, and scalar k, we have

- v.w=w.v **Commutative Law**
- (kv).w=v.(kw)=k(v.w) **Associative Law**
- $v.0=0=0.v$
- u.(v+w)=u.v+u.w **Distributive Law**
- (u+v).w=u.w+v.w **Distributive Law**

ALC: YES

 \mathcal{L}^{max}

• $|V.W|=||V|| ||W||$ Cauchy-Schwarz Inequality

6

 2. The vector product

Definition

The vector product is a vector operation performed in three-dimensional oriented Euclidean spaces.

Let $v = (v_{1,} v_{2,} v_{3})$ and $w = (w_{1,} w_{2,} w_{3})$ be vectors in R³.The dot product of v and , denoted by $v \times w$, is the vector in \mathbb{R}^3 given by:

$$
v \times w = \begin{pmatrix} v_3 w_3 - v_3 w_3 \\ v_2 w_1 - v_1 w_2 \\ v_1 w_2 - v_2 w_1 \end{pmatrix}
$$

$$
v \times w = \begin{vmatrix} i & j & k \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{vmatrix} = \begin{vmatrix} v_2 & v_3 \\ w_2 & w_3 \end{vmatrix} i - \begin{vmatrix} v_1 & v_3 \\ w_1 & w_3 \end{vmatrix} j + \begin{vmatrix} v_1 & v_2 \\ w_1 & w_2 \end{vmatrix} k
$$

$$
=(v_3w_3-v_3w_3)i-(v_2w_1-v_1w_2)j+(v_1w_2-v_2w_1)k
$$

a) Theorem

If the cross product v×w of two nonzero vectors **v** and **w** is also nonzero vector, then it is perpendicular to both **v** and **w**.

If θ is the angle between nonzero vectors **v** and w in \mathbb{R}^3 then:

 $v \times w = v \times w \times \mathfrak{g}_n$

b) Derivatives of the products of vectors

$$
\frac{\partial}{\partial x} (A \cdot B) = A \cdot \frac{\partial B}{\partial x} + \frac{\partial A}{\partial x} \cdot B \qquad \frac{\partial}{\partial x} (A \times B) = A \times \frac{\partial B}{\partial x} + \frac{\partial A}{\partial x} \times B
$$

$$
\frac{\partial}{\partial y} (A \cdot B) = A \cdot \frac{\partial B}{\partial y} + \frac{\partial A}{\partial y} \cdot B \qquad \frac{\partial}{\partial y} (A \times B) = A \times \frac{\partial B}{\partial y} + \frac{\partial A}{\partial y} \times B
$$

$$
\frac{\partial}{\partial z} (A \cdot B) = A \cdot \frac{\partial B}{\partial z} + \frac{\partial A}{\partial z} \cdot B \qquad \frac{\partial}{\partial z} (A \times B) = A \times \frac{\partial B}{\partial z} + \frac{\partial A}{\partial z} \times B
$$

Example

Determine dA if vector function $A(x, y, z) = (x^2 \sin y)i + (z^2 \cos y)j - (xy^2)k$

▪ Solution

$$
d\mathbf{A} = \frac{\partial \mathbf{A}}{\partial x} dx + \frac{\partial \mathbf{A}}{\partial y} dy + \frac{\partial \mathbf{A}}{\partial z} dz = \left[(\sin y) \mathbf{i} \frac{d}{dx} (x^2) - (y^2) \mathbf{k} \frac{dx}{dx} \right] dx + \left[x^2 \mathbf{i} \frac{d}{dy} (\sin y) + z^2 \mathbf{j} \frac{d}{dy} (\cos y) \right] dy
$$

+
$$
\left[(\cos y) \mathbf{j} \frac{d}{dz} (z^2) \right] dz
$$

=
$$
\left[(2x \sin y) \mathbf{i} - y^2 \mathbf{k} \right] dx + \left[(x^2 \cos y) \mathbf{i} - (z^2 \sin y) \mathbf{j} - 2xy \mathbf{k} \right] dy + \left[(2z \cos y) \mathbf{j} \right] dz
$$

=
$$
\left[2x \sin y dx + x^2 \cos y dy \right] \mathbf{i} + \left[2z \cos dz - z^2 \sin y dy \right] \mathbf{j} - \left(y^2 dx + 2xy dy \right) \mathbf{k}
$$

 3. Gradient, divergence and curl

Gradient, divergence and curl are frequently used when dealing with variations of vectors using a vector operator designated by ∇(Pronounced Del) defined as follows:

$$
\nabla = \partial/\partial x \, i + \partial/\partial y \, j + \partial/\partial z \, k
$$

in a rectangular coordinate system.

a) Gradient

$$
grad \phi = \nabla \phi = (\partial/\partial x \, i + \partial/\partial y \, j + \partial/\partial z \, k) \phi = \partial \phi/\partial x \, i + \partial \phi/\partial y \, j + \partial \phi/\partial z \, k
$$

b) Divergence

$$
div \mathbf{A} = \nabla \bullet \mathbf{A} = \left(\mathbf{i}\frac{\partial}{\partial x} + \mathbf{j}\frac{\partial}{\partial y} + \mathbf{k}\frac{\partial}{\partial z} \right) \bullet \left(A_x \mathbf{i} + A_y \mathbf{j} + A_z \mathbf{k} \right) = \frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z}
$$

c) Curl (rotation)

All County

 $\mathcal{C}(\mathcal{A})$

N.

$$
\text{curl } \mathbf{A} = \nabla \times \mathbf{A} = \left(\mathbf{i} \frac{\partial}{\partial x} + \mathbf{j} \frac{\partial}{\partial y} + \mathbf{k} \frac{\partial}{\partial z} \right) \times (A_x \mathbf{i} + A_y \mathbf{j} + A_z \mathbf{k})
$$
\n
$$
= \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ A_x & A_y & A_z \end{vmatrix} = \mathbf{i} \begin{vmatrix} \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ A_y & A_z \end{vmatrix} - \mathbf{j} \begin{vmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial z} \\ A_z & A_z \end{vmatrix} + \mathbf{k} \begin{vmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\ A_z & A_y \end{vmatrix}
$$
\n
$$
= \left(\frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z} \right) \mathbf{i} - \left(\frac{\partial A_z}{\partial x} - \frac{\partial A_x}{\partial z} \right) \mathbf{j} + \left(\frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y} \right) \mathbf{k}
$$

 C. Solved exercises

Exercise 1

Quantity **A** has a dimensional formula of **ML** and quantity **B** has a dimensional formula of **MT-1** . If $A = \sqrt{BC}$,

what is the dimensional formula of **C**?

A. MLT $B. M² T$

- $C. L T⁻¹$
- **D.** $M^2 L^2 T^{-1}$

Solution

if:

 $A = \sqrt{BC}$

then:

 $C = A^2/B$

Therefore, the dimensional formula of C is

$$
[C] = M^2 L^2 / M T^{-1} = ML^2 T.
$$

Exercise 2

If **F** is the gravitational force between two bodies of masses **m**₁ and **m**₂ separated by distance **r** and it is given

by **F= Gmm2**, what is the unit of the gravitational constant, **G**?

 \mathcal{M}^{c} , \mathcal{M}^{c}

College

 \mathcal{N}

 \mathcal{N}

A. m³/kg.s

B. N.m²/kg

C. m²/kg.s²

D. All of the above

Solution

Applying dimensional analysis to the formula, we have:

$$
[F] = \left[\frac{GMm}{r^2}\right]
$$

$$
[F] = \frac{[G][M][m]}{[r]^2}
$$

$$
[G] = \frac{[F][r]^2}{[M][m]}
$$

Substituting in the dimensions for force, distance, and mass, we get

$$
[G]=MLT^{-2}L^2/M^2
$$

 $[G]=M^{-1}L^3T^{-2}$

Replacing these with the SI units for each dimension, we get the unit for G as m³/kg.s².

Exercise 3

If the velocity **V** (**in cm/s**) of a particale is given in term of time (in sec) by the equation **V=atb/(t+c)**

Give the dimensions of **a**, **b** and **c**.

Solution

$$
[V] = [at] = [b][t+c] - 1/[t+c] = [t] = [C]
$$

$$
[v] = [a][t] = [a] = [v][t]^{-1}/[V] = L T^{-1}
$$

$$
[a] = L T^{-1} T^{-1} = L T^{-2}
$$

$$
[t] = [C] = [C] = T
$$

$$
[V] = [b][t]^{-1} = [b][c]^{-1}
$$

$$
[b] = [V][t] = L T^{-1} T = L
$$

$$
[a] = L T^{-2}; [b] = L; [c] = T
$$

Exercise 4

A force \vec{F} =3 \vec{i} +4 \vec{j} +5 \vec{k} (N) acting on a body produces a velocity \vec{v} = 2 \vec{i} - \vec{j} +3 \vec{k} (m.s-1), calculate the power.

Solution

$$
W = \vec{F} \vec{r} \quad ; P = \frac{W}{t} = \vec{F} \cdot \frac{\vec{r}}{t}
$$

$$
\frac{\vec{r}}{t} = \vec{v}
$$

$$
P = \vec{F} \cdot \vec{V}
$$

$$
P = \begin{pmatrix} 3 \\ 4 \\ 5 \end{pmatrix} \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix} = 3(2) + 4(-1) + 5(3) = 6 - 4 + 15 = 17
$$

