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Physics  describes  material  and  space,  their  properties  and  their  behaviour.  Measurable
properties are called PHYSICAL DIMENSIONS. When their measurement is expressed by a
simple number, we speak of a  scalar quantity. When a set of several numbers (vectors) is
required to represent them, they are referred to as vector quantities.
   
   

 A. Dimensional Analysis

 1. Fundamental (primary/basic) physical quantities

The International System (IS) is made up of the units of the rationalised MKSA system (m:
metre, kg: kilogram, s: second and a: ampere) and includes additional definitions for the unit
of temperature and the unit of luminous intensity.
   

Symbol Dimensions
Length m L
Mass Kg M
Time s T
Electric curre A I
Temperature K H
Amount of su mol N
Luminous inte cd J

Table1
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 2. Derived (secondary) physical quantities

These are quantities whose definitions are based on other physical quantities (base quantities)
   

Physical quantity Dimenional formula

1 Area

2 volume

3 Density=mass/volume

4 Speed or velocity=dx/dt

5 Acceleration= dv/dt

6 Force=mdv=ma

[M0L2T0]

[M0L3T0]

[M1L-3T0]

[M0LT-1]

[M0LT-2]

[MLT-2]
Table2

   

 B. Vector calculation

In physics, a number or numerical function uses vectors to model quantities that cannot be
completely defined alone. For example, to specify a displacement, velocity, force or electric
field, direction and sense are essential. Vectors are the opposite of scalar quantities described
by a simple number, such as mass, temperature, etc.
   

O⃗M =x i⃗ + y j⃗+ z k⃗
   

 

 
   
   

   

 

 
   

 1. The scalar product

Definition
The scalar product is an algebraic operation in addition to the laws that apply to vectors.
It associates two vectors with their product, which is a number (or scalar, hence the name). It
allows you to exploit traditional Euclidean geometry concepts: lengths, angles, orthogonality.
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Let v=(v1,v2,v3)  and w=(w1,w2,w3) be vectors in R3. The dot product of v and w, denoted by
v.w, is given by:
   

v .w=v1w1+v2w 2+v3w3

   

 

 
   

Similarly, for the vectors v=(v1, v2 ) and w=(w1,w2) in R2, the dot product is
   

v .w=v1w1+v2w2

   

 

 
   

 a) Theorem

Let v,w be nonzero vectors, and let θ be the angle between them, then:
   

cosθ =(v .w)/‖ v ‖ ‖w ‖
   

 

 
   
   

   

 

 
   

 b) Corollary

If θ is the angle between nonzero vectors v and w then:
   

   

 

 
   

 c) Theorem Basic Properties of the scalar product

For any vectors u, v, w, and scalar k, we have
 v.w=w.v Commutative Law
 (kv).w=v.(kw)=k(v.w) Associative Law
 v.0=0=0.v
 u.(v+w)=u.v+u.w Distributive Law
 (u+v).w=u.w+v.w Distributive Law
 |v.w|= v w  ‖ ‖‖ ‖ Cauchy-Schwarz Inequality
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 2. The vector product

Definition
The vector product is a vector operation performed in three-dimensional oriented Euclidean
spaces.

Let  v=(v1,v2,v3) and  w=(w1,w2,w3)  be vectors in R3.The dot product of v and , denoted by
v×w, is the vector in R3 given by:
   

   

 

 
   

 a) Theorem

If the cross product v×w of two nonzero vectors  v and  w is also nonzero vector, then it is
perpendicular to both v and w.
If θ is the angle between nonzero vectors v and w in R3 then:
   

v ×w=‖ v ‖ ‖w ‖ sinθ
   

 

 
   

 b) Derivatives of the products of vectors
   

   

 

 
   

Example

Determine dA if vector function A(x , y , z )=( x2 siny)i+(z2cosy) j−(xy2)k
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▪ Solution
   

   

 

 
   

 3. Gradient, divergence and curl

Gradient, divergence and curl are frequently used when dealing with variations of vectors using
a vector operator designated by ∇(Pronounced Del) defined as follows:
   

∇ =∂ /∂ x i+∂ /∂ y j+∂ /∂ z k
   

 

 
   

in a rectangular coordinate system.

 a) Gradient
   

grad ϕ=∇ ϕ=(∂ /∂ x i+∂ /∂ y j+∂ /∂ z k )ϕ=∂ϕ/∂ x i+∂ϕ/∂ y j+∂ϕ/∂ z k
   

 

 
   

 b) Divergence
   

   

 

 
   

 c) Curl (rotation)
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 C. Solved exercises
Exercise 1
Quantity A has a dimensional formula of ML and quantity B has a dimensional formula of MT-1.
If A = √BC,
what is the dimensional formula of C?
A. MLT
B. ML2 T
C. LT-1

D. M2 L2 T-1

Solution
if:
   

A=√ BC
   

 

 
   

then:
   

C=A2/ B
   

 

 
   

Therefore, the dimensional formula of C is
   

[C ]=M 2L2 /MT−1=ML ²T .
   

 

 
   

Exercise 2
If F is the gravitational force between two bodies of masses m₁ and m₂ separated by distance
r and it is given
by F= Gmm2, what is the unit of the gravitational constant, G?
A. m³/kg.s
B. N.m²/kg
C. m²/kg.s²
D. All of the above
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Solution
Applying dimensional analysis to the formula, we have:
   

   

 

 
   

Substituting in the dimensions for force, distance, and mass, we get
   

[G ]=MLT−2 L2/M 2

   

 

 
   
   

[G ]=M −1 L3T−2.

   

 

 
   

Replacing these with the SI units for each dimension, we get the unit for G as m³/kg.s².

Exercise 3
If the velocity  V (in cm/s) of a particale is given in term of time (in sec) by the equation
V=atb/(t+c)
Give the dimensions of a, b and c.

Solution
   

[V ]=[at ]=[b ][t+c ]−1 /[ t+c ]=[t ]=[C ]
   

 

 
   
   

[v ]=[a ][ t ]=[a ]=[v ][t ]−1/[V ]=L T−1

   

 

 
   
   

[a]=LT−1T−1=LT−2

   

 

 
   
   

[t ]=[C ]=[C ]=T
   

 

 
   
   

[V ]=[b ][ t ]−1=[b ][c ]−1

   

 

 
   
   

[b ]=[V ][ t ]=LT−1T=L
   

 

 
   

Chapter I: Dimensional analysis and Vector calculus

10



   

[a ]=LT−2 ; [b ]=L ; [c ]=T
   

 

 
   

Exercise 4

A  force F⃗=3 i⃗ +4 j⃗+5 k⃗  (N)  acting  on  a  body  produces  a  velocity v⃗=2 i⃗− j⃗+3 k⃗  (m.s-¹),
calculate the power.

Solution
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