

DR. KATIA SIDI AHMED MOHAMED KHIDER UNIVERSITY OF BISKRA SCIENCE AND TECHNOLOGY FACULTY COMMON CORE IN SCIENCE AND TECHNOLOGY

KATIA.SIDIAHMED@UNIV-BISKRA.DZ

Januray 2024

Table of contents

I- Chapter I: Dimensional analysis and Vector calculus 4 A. Dimensional Analysis. 4 1. Fundamental (primary/basic) physical quantities. 4 2. Derived (secondary) physical quantities. 5 B. Vector calculation. 5 1. The scalar product. 5 2. The vector product. 6 3. Gradient, divergence and curl. 8 C. Solved exercises. 8

Chapter I: Dimensional analysis and Vector calculus

Physics describes material and space, their properties and their behaviour. Measurable properties are called **PHYSICAL DIMENSIONS.** When their measurement is expressed by a simple number, we speak of a **scalar quantity**. When a set of several numbers (vectors) is required to represent them, they are referred to as **vector quantities**.

A. Dimensional Analysis

1. Fundamental (primary/basic) physical quantities

The International System (IS) is made up of the units of the rationalised MKSA system (m: metre, kg: kilogram, s: second and a: ampere) and includes additional definitions for the unit of temperature and the unit of luminous intensity.

	Symbol	Dimensions
Length	m	L
Mass	Kg	Μ
Time	S	Т
Electric curre	А	I
Temperature	К	н
Amount of su	ı mol	Ν
Luminous int	e cd	J
	Table1	

Table1

2. Derived (secondary) physical quantities

These are quantities whose definitions are based on other physical quantities (base quantities)

	Physical quantity	Dimenional formula
1	Area	$[M^{0}L^{2}T^{0}]$
2	volume	$[M^{0}L^{3}T^{0}]$
3	Density=mass/volume	$[M^{1}L^{-3}T^{0}]$
4	Speed or velocity=dx/dt	[M ⁰ LT ⁻¹]
5	Acceleration= dv/dt	[M ⁰ LT ⁻²]
6	Force=mdv=ma	[MLT ⁻²]
	Table2	

B. Vector calculation

In physics, a number or numerical function uses vectors to model quantities that cannot be completely defined alone. For example, to specify a displacement, velocity, force or electric field, direction and sense are essential. Vectors are the opposite of scalar quantities described by a simple number, such as mass, temperature, etc.

$$\vec{OM} = x \vec{i} + y \vec{j} + z \vec{k}$$

1. The scalar product

Definition

The scalar product is an algebraic operation in addition to the laws that apply to vectors. It associates two vectors with their product, which is a number (or scalar, hence the name). It allows you to exploit traditional Euclidean geometry concepts: lengths, angles, orthogonality.

Let $v = (v_1, v_2, v_3)$ and $w = (w_1, w_2, w_3)$ be vectors in R3. The dot product of v and w, denoted by v.w, is given by:

$$v \cdot w = v_1 w_1 + v_2 w_2 + v_3 w_3$$

Similarly, for the vectors $v = (v_1, v_2)$ and $w = (w_1, w_2)$ in R^2 , the dot product is

$$v.w = v_1w_1 + v_2w_2$$

a) Theorem

Let v,w be nonzero vectors, and let θ be the angle between them, then:

$$\theta os = (v.w) / \|v\| \|w\|$$

b) Corollary

If θ is the angle between nonzero vectors v and w then:

$$\boldsymbol{v}.\boldsymbol{w} \text{ is} = \begin{cases} > 0 \text{ for } 0^{\circ} \le \theta < 90^{\circ} \\ 0 \text{ for } \theta = 90^{\circ} \\ < 0 \text{ for } 90^{\circ} < \theta \le 90^{\circ} \end{cases}$$

c) Theorem Basic Properties of the scalar product

For any vectors u, v, w, and scalar k, we have

- v.w=w.v Commutative Law
- (kv).w=v.(kw)=k(v.w) Associative Law
- v.0=0=0.v
- u.(v+w)=u.v+u.w Distributive Law
- (u+v).w=u.w+v.w Distributive Law
- |v.w|=||v||||w|| Cauchy-Schwarz Inequality

2. The vector product

Definition

The vector product is a vector operation performed in three-dimensional oriented Euclidean spaces.

Let $v = (v_1, v_2, v_3)$ and $w = (w_1, w_2, w_3)$ be vectors in R³. The dot product of v and , denoted by v×w, is the vector in R³ given by:

$$v \times w = \begin{pmatrix} v_3 w_3 - v_3 w_3 \\ v_2 w_1 - v_1 w_2 \\ v_1 w_2 - v_2 w_1 \end{pmatrix}$$
$$v \times w = \begin{vmatrix} i & j & k \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{vmatrix} = \begin{vmatrix} v_2 & v_3 \\ w_2 & w_3 \end{vmatrix} i - \begin{vmatrix} v_1 & v_3 \\ w_1 & w_3 \end{vmatrix} j + \begin{vmatrix} v_1 & v_2 \\ w_1 & w_2 \end{vmatrix} k$$

$$= (v_3w_3 - v_3w_3)i - (v_2w_1 - v_1w_2)j + (v_1w_2 - v_2w_1)k$$

a) Theorem

If the cross product v×w of two nonzero vectors v and w is also nonzero vector, then it is perpendicular to both v and w.

If $\boldsymbol{\Theta}$ is the angle between nonzero vectors \mathbf{v} and \mathbf{w} in \mathbb{R}^3 then:

 $v \times w = \|v\| \|w\|$ fin

b) Derivatives of the products of vectors

$$\frac{\partial}{\partial x}(\mathbf{A} \bullet \mathbf{B}) = \mathbf{A} \bullet \frac{\partial \mathbf{B}}{\partial x} + \frac{\partial \mathbf{A}}{\partial x} \bullet \mathbf{B} \qquad \qquad \frac{\partial}{\partial x}(\mathbf{A}\mathbf{x}\mathbf{B}) = \mathbf{A}\mathbf{x}\frac{\partial \mathbf{B}}{\partial x} + \frac{\partial \mathbf{A}}{\partial x}\mathbf{x}\mathbf{B}$$
$$\frac{\partial}{\partial y}(\mathbf{A} \bullet \mathbf{B}) = \mathbf{A} \bullet \frac{\partial \mathbf{B}}{\partial y} + \frac{\partial \mathbf{A}}{\partial y} \bullet \mathbf{B} \qquad \qquad \frac{\partial}{\partial y}(\mathbf{A}\mathbf{x}\mathbf{B}) = \mathbf{A}\mathbf{x}\frac{\partial \mathbf{B}}{\partial y} + \frac{\partial \mathbf{A}}{\partial y}\mathbf{x}\mathbf{B}$$
$$\frac{\partial}{\partial z}(\mathbf{A} \bullet \mathbf{B}) = \mathbf{A} \bullet \frac{\partial \mathbf{B}}{\partial z} + \frac{\partial \mathbf{A}}{\partial z} \bullet \mathbf{B} \qquad \qquad \frac{\partial}{\partial z}(\mathbf{A}\mathbf{x}\mathbf{B}) = \mathbf{A}\mathbf{x}\frac{\partial \mathbf{B}}{\partial y} + \frac{\partial \mathbf{A}}{\partial y}\mathbf{x}\mathbf{B}$$
$$\frac{\partial}{\partial z}(\mathbf{A}\mathbf{x}\mathbf{B}) = \mathbf{A}\mathbf{x}\frac{\partial \mathbf{B}}{\partial y} + \frac{\partial \mathbf{A}}{\partial y}\mathbf{x}\mathbf{B}$$

Example

Determine dA if vector function $A(x, y, z) = (x^2 siny)i + (z^2 cosy)j - (xy^2)k$

Solution

$$d\mathbf{A} = \frac{\partial \mathbf{A}}{\partial \mathbf{x}} dx + \frac{\partial \mathbf{A}}{\partial y} dy + \frac{\partial \mathbf{A}}{\partial z} dz = \left[(\sin y)\mathbf{i}\frac{d}{dx}(x^2) - (y^2)\mathbf{k}\frac{dx}{dx} \right] dx + \left[x^2\mathbf{i}\frac{d}{dy}(\sin y) + z^2\mathbf{j}\frac{d}{dy}(\cos y) \right] dy$$
$$+ \left[(\cos y)\mathbf{j}\frac{d}{dz}(z^2) \right] dz$$
$$= \left[(2x\sin y)\mathbf{i} - y^2\mathbf{k} \right] dx + \left[(x^2\cos y)\mathbf{i} - (z^2\sin y)\mathbf{j} - 2xy\mathbf{k} \right] dy + \left[(2z\cos y)\mathbf{j} \right] dz$$
$$= (2x\sin y \, dx + x^2\cos y \, dy)\mathbf{i} + (2z\cos dz - z^2\sin y \, dy)\mathbf{j} - (y^2 \, dx + 2xy \, dy)\mathbf{k}$$

3. Gradient, divergence and curl

Gradient, divergence and curl are frequently used when dealing with variations of vectors using a vector operator designated by ∇ (Pronounced Del) defined as follows:

$$\nabla = \partial / \partial x i + \partial / \partial y j + \partial / \partial z k$$

in a rectangular coordinate system.

a) Gradient

$$grad \phi = \nabla \phi = (\partial/\partial x i + \partial/\partial y j + \partial/\partial z k) \phi = \partial \phi/\partial x i + \partial \phi/\partial y j + \partial \phi/\partial z k$$

b) Divergence

$$div \mathbf{A} = \nabla \bullet \mathbf{A} = \left(\mathbf{i}\frac{\partial}{\partial x} + \mathbf{j}\frac{\partial}{\partial y} + \mathbf{k}\frac{\partial}{\partial z}\right) \bullet \left(A_x \mathbf{i} + A_y \mathbf{j} + A_z \mathbf{k}\right) = \frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z}$$

c) Curl (rotation)

2 - E - E

$$\operatorname{curl} \mathbf{A} = \nabla \times \mathbf{A} = \left(\mathbf{i} \frac{\partial}{\partial x} + \mathbf{j} \frac{\partial}{\partial y} + \mathbf{k} \frac{\partial}{\partial z}\right) \times \left(A_x \mathbf{i} + A_y \mathbf{j} + A_z \mathbf{k}\right)$$
$$= \left| \frac{\mathbf{i}}{\partial x} \frac{\mathbf{j}}{\partial y} \frac{\mathbf{k}}{\partial z}}{\partial x} \right|_{A_x} = \mathbf{i} \left| \frac{\partial}{\partial y} \frac{\partial}{\partial z}}{A_z} - \mathbf{j} \right|_{A_x} \frac{\partial}{\partial z}} + \mathbf{k} \left| \frac{\partial}{\partial x} \frac{\partial}{\partial y}}{A_x} \frac{\partial}{\partial y} \right|_{A_x} + \mathbf{k} \left| \frac{\partial}{\partial x} \frac{\partial}{\partial y}}{A_x} - \mathbf{k} \right|_{A_x} + \mathbf{k} \left| \frac{\partial}{\partial x} \frac{\partial}{\partial y}}{A_x} - \mathbf{k} \right|_{A_x} + \mathbf{k} \left| \frac{\partial}{\partial x} \frac{\partial}{\partial y}}{A_x} - \mathbf{k} \right|_{A_x} + \mathbf{k} \left| \frac{\partial}{\partial x} \frac{\partial}{\partial y}}{A_x} - \mathbf{k} \right|_{A_x} + \mathbf{k} \left| \frac{\partial}{\partial x} \frac{\partial}{\partial y}}{A_x} - \mathbf{k} \right|_{A_x} + \mathbf{k} \left| \frac{\partial}{\partial x} \frac{\partial}{\partial y}}{A_x} - \mathbf{k} \right|_{A_x} + \mathbf{k} \left| \frac{\partial}{\partial x} \frac{\partial}{\partial y}}{A_x} - \mathbf{k} \right|_{A_x} + \mathbf{k} \left| \frac{\partial}{\partial x} \frac{\partial}{\partial y}}{A_x} - \mathbf{k} \right|_{A_x} + \mathbf{k} \left| \frac{\partial}{\partial x} \frac{\partial}{\partial y}}{A_x} - \mathbf{k} \right|_{A_x} + \mathbf{k} \left| \frac{\partial}{\partial x} \frac{\partial}{\partial y}}{A_x} - \mathbf{k} \right|_{A_x} + \mathbf{k} \left| \frac{\partial}{\partial x} \frac{\partial}{\partial y}}{A_x} - \mathbf{k} \right|_{A_x} + \mathbf{k} \left| \frac{\partial}{\partial x} \frac{\partial}{\partial y}}{A_x} - \mathbf{k} \right|_{A_x} + \mathbf{k} \right|_{A_x} + \mathbf{k} \left| \frac{\partial}{\partial x} \frac{\partial}{\partial y}}{A_x} - \mathbf{k} \right|_{A_x} + \mathbf{k} \left| \frac{\partial}{\partial x} \frac{\partial}{\partial y}}{A_x} - \mathbf{k} \right|_{A_x} + \mathbf{k} \right|_{A_x} + \mathbf{k} \left| \frac{\partial}{\partial x} \frac{\partial}{\partial y}}{A_x} - \mathbf{k} \right|_{A_x} + \mathbf{k} \left| \frac{\partial}{\partial x} \frac{\partial}{\partial y}}{A_x} - \mathbf{k} \right|_{A_x} + \mathbf{k} \right|_{A_x} + \mathbf{k} \left| \frac{\partial}{\partial x} \frac{\partial}{\partial y}}{A_x} - \mathbf{k} \right|_{A_x} + \mathbf{k} \left| \frac{\partial}{\partial x} \frac{\partial}{\partial y}}{A_x} - \mathbf{k} \right|_{A_x} + \mathbf{k} \right|_{A_x} + \mathbf{k} \left| \frac{\partial}{\partial x} \frac{\partial}{\partial y} \right|_{A_x} + \mathbf{k} \right|_{A_x} + \mathbf{k} \left| \frac{\partial}{\partial x} \frac{\partial}{\partial y} \right|_{A_x} + \mathbf{k} \left| \frac{\partial}{\partial x} \frac{\partial}{\partial y} \right|_{A_x} + \mathbf{k} \right|_{A_x} + \mathbf{k} \left| \frac{\partial}{\partial x} \frac{\partial}{\partial y} \right|_{A_x} + \mathbf{k} \left| \frac{\partial}{\partial$$

C. Solved exercises

Exercise 1

Quantity **A** has a dimensional formula of **ML** and quantity **B** has a dimensional formula of **MT**⁻¹. If $A = \sqrt{BC}$,

what is the dimensional formula of **C**?

- A. MLT
 B. ML² T
- **C**. LT⁻¹
- **D.** $M^2 L^2 T^{-1}$

Solution

if:

 $A = \sqrt{BC}$

then:

 $C = A^2 / B$

Therefore, the dimensional formula of C is

$$[C] = M^2 L^2 / MT^{-1} = ML^2 T.$$

Exercise 2

If ${\bf F}$ is the gravitational force between two bodies of masses ${\bf m_1}$ and ${\bf m_2}$ separated by distance ${\bf r}$ and it is given

by F= Gmm2, what is the unit of the gravitational constant, G?

- A. m³/kg.s
- B. N.m²/kg
- **C**. m²/kg.s²
- **D**. All of the above

9

Solution

Applying dimensional analysis to the formula, we have:

$$[F] = \left[\frac{GMm}{r^2}\right]$$
$$[F] = \frac{[G][M][m]}{[r]^2}$$
$$[G] = \frac{[F][r]^2}{[M][m]}$$

Substituting in the dimensions for force, distance, and mass, we get

$$[G] = MLT^{-2}L^{2}/M^{2}$$
$$[G] = M^{-1}L^{3}T^{-2}$$

Replacing these with the SI units for each dimension, we get the unit for G as $m^3/kg.s^2$.

Exercise 3

If the velocity V (in cm/s) of a particale is given in term of time (in sec) by the equation $V{=}atb/(t{+}c)$

Give the dimensions of **a**, **b** and **c**.

Solution

$$[V] = [at] = [b][t+c] - 1/[t+c] = [t] = [C]$$

$$[v] = [a][t] = [a] = [v][t]^{-1}/[V] = LT^{-1}$$

$$[a] = LT^{-1}T^{-1} = LT^{-2}$$

$$[t] = [C] = [C] = T$$

$$[V] = [b][t]^{-1} = [b][c]^{-1}$$

$$[b] = [V][t] = LT^{-1}T = L$$

$$[a] = LT^{-2}; [b] = L; [c] = T$$

Exercise 4

A force $\vec{F} = 3\vec{i} + 4\vec{j} + 5\vec{k}$ (N) acting on a body produces a velocity $\vec{v} = 2\vec{i} - \vec{j} + 3\vec{k}$ (m.s⁻¹), calculate the power.

Solution

$$W = \vec{F} \cdot \vec{r} \quad ; P = \frac{W}{t} = \vec{F} \cdot \frac{\vec{r}}{t}$$
$$\frac{\vec{r}}{t} = \vec{v}$$
$$P = \vec{F} \cdot \vec{V}$$
$$P = \begin{pmatrix} 3\\4\\5 \end{pmatrix} \begin{pmatrix} 2\\-1\\3 \end{pmatrix} = 3(2) + 4(-1) + 5(3) = 6 - 4 + 15 = 17$$

