

Lessons questions

Write the right answer:

I. What is the nature of the physical quantity X if $[X] = ML^2 T^2$

a. Work b. Force c. Power

II. If **f** is a scalar function and \vec{A} , \vec{B} and \vec{C} are arbitrary vectors **S** surface between 2 vectors, **V** volume between 3 vectors

1.	$\overrightarrow{grad}f =$	a.	$\vec{\nabla} f$	b.	$\vec{\nabla} X f$	c.	$\overrightarrow{\nabla} \cdot f$
2.	$divec{A}$	a.	$ec{ abla}\cdotec{A}$	b.	$\vec{\nabla} X \vec{A}$	c.	$\vec{A} \cdot \vec{\nabla}$
3.	S =	a.	$\vec{A}X\vec{B}$	b.	$\left \vec{A} X \vec{B} \right $	c.	$\vec{A} \cdot \vec{B}$
4	V=	a.	$\vec{A}.(\vec{B}X\vec{C})$	b.	<i>ĂXBXĈ</i>	c.	$\vec{A} \cdot \vec{B} \cdot \vec{C}$

III. The work is:

$w = \Delta K$	w=- ΔK	w=-∆Ep

Exercise 1

The kinetic energy of an object of mass, \mathbf{m} moving with a velocity of 5 ms⁻¹ is 25 J.

- What will be its kinetic energy when its velocity is doubled?
- Calculate the work for $V_i\!=\!5$ (m. s) and $V_f\!=\!\!2V_i$

Exercise 2

The rectilinear motion of a material point is defined by the following equation

$$S = 2t^3 - 9t^2 + 12t + 1$$

- Calculate the velocity and the acceleration.
- Study the motion of the point as t∈[0,+∞-] [, by indicating the direction of motion and whether it is accelerating or decelerating