Module: PW Physics2 Level: 1st Year ST-LMD

Practical Work N°1: Electrical measurements

I- Objective of the experiment:

- How to use simple, non-digital electrical measuring devices.

- Set the measurement accuracy.

- Experimental verification of Ohm's law.

II- Theoretical principle:

We know that the reading on both the ammeter and voltmeter is related to both the caliber

and ladder chosen.

The ladder (N) \leftarrow Caliber $X_{mes} = \frac{caliber}{the \ ladder} \ reading$ Reading \leftarrow X_{mes}

N: The number of steps of the ladder

- Ohm's law between two ends of a resistance:

 $V_{AB} = R \times I$

It is given by the potential difference between the two ends of a conductor AB by the

following relationship V

Where: V_{AB} represents the voltage.

R: is the resistance of the ohmic conductor, and its unit is ohms (Ω).

I: the intensity of the electric current, and its unit is ampere (A).

- Measurement errors

1- Direct measurements:

When we use the voltmeter and ammeter, there is uncertainty in the measurement and this is due to several sources.

Error caused by the device ΔX_{cl}

It relates to the device only, according to its design, and this is known by knowing the device type:

Device type for the voltmeter:

- 1.5 voltmeters in alternating current AC.
- 1 voltmeter in DC (direct current).

Device type for the ampermeter:

2.5 In both cases AC and DC.

 $\Delta X_{cl} = device type \times (caliber / 100)$

The error resulting from the method ΔX_1 :

Regarding both scale and caliber. We consider that the error in reading is one-quarter of the scale.

The ladder (N) \leftarrow Caliber 0.25 grade \leftarrow X₁ $\Delta X_l = 0.25 \times (caliber / The ladder)$

The total error resulting from using the device is the sum of the previous two errors

$$\Delta X = \Delta X_{\rm cl} + \Delta X_l$$

2. Indirect errors measurements: These errors generally result from the use of mathematical relations and relations. The generality in which we find uncertainty is as follows Let us have a function f(x,y,z,...) multivariable, their differential is given by the following relationship:

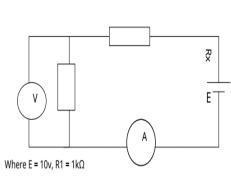
$$df(x, y, z...) = \frac{\delta f(x, y, z...)}{\delta x} dx + \frac{\delta f(x, y, z...)}{\delta y} dy + \frac{\delta f(x, y, z...)}{\delta z} dz + \dots$$

If the function f(x,y,z,...) A physical quantity, the uncertainty in which is given by the following relationship:

$$\Delta f(x, y, z...) = \left| \frac{\delta f(x, y, z...)}{\delta x} \right| \Delta x + \left| \frac{\delta f(x, y, z...)}{\delta y} \right| \Delta y + \left| \frac{\delta f(x, y, z...)}{\delta x} \right| \Delta z + \dots$$

Some examples

Case of addition and subtraction

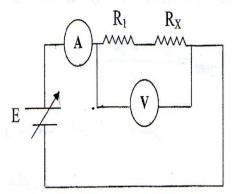

If
$$f(x, y) = x \pm y$$
 then $\Delta f(x, y) = \Delta x + \Delta y$

The case of multiplication or division

If
$$f(x, y) = \frac{x}{y}$$
 Or $f(x, y) = x \cdot y$ Then $\frac{\Delta f(x, y)}{f(x, y)} = \frac{\Delta x}{x} + \frac{\Delta y}{y}$

Exercise:

Let us consider the electrical circuit shown in the following figure. Voltmeter type: ε_{cl} = 1%, Caliber=10v, the ladder = 100 scales Ampermeter type: ε_{cl} =2.5%, Caliber=10mAm, the ladder = 100 scales Measured Voltage: V_{mes} =3.8V Measured intensity: I_{mes}= 6.4 mA 1- What is the reading on both devices?


2- Calculate both the absolute and relative uncertainty in electrical voltage and electrical intensity?

- 3- Calculate Rx ?
- 4- Calculate ΔR_x And $\Delta Rx/R_x$?

III. Experiment:

Let the experimental structures shown in Figures 1 and 2.

- Two resistors: one variable R_X of unknown value and the other constant $R_1 = \frac{1}{2}K \Omega \pm 1\Omega$

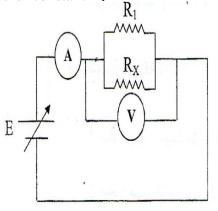


Figure.1

Questions:

Change the potential difference from 0 to $14_{\rm V}$, then write down the results in the table.


- 1. Give the method of filling the table?
- 2. Plot the graph $V_{mes}=f(I_{mes})$ with error barriers graphed?

3. Calculate the slope of the curve and deduce the value of $R_X(exp)$ and compare it with the theoretical value of $R_X(th)$?

- 4. Calculate the relative uncertainty and absolute uncertainty of R_X ?
- 5. Write the RX resistance in the form $R_X = (\dots \pm \dots)$?
- 6. Answer the same questions when performing Experiment 2?
- 7. Compare $R_X(th)$ and $R_X(exp)$ in both cases (sequence and branching)? .
- 8. What is your general conclusion?

∆ Req	Δ Req / R _{eq}	Req	∆V/V	ΔV	V _{mes}	القراءة	السلم	العيار			ΔΙ/Ι	ΔΙ	I _{mes}	القراءة	السلم	العيار	
						1			V ₁					-			I ₁
à									V ₂	V				1			I ₂
									V ₃	V							I3
								7	V ₄								I ₄
									V ₅								I5

Appendix: How to read colored resistors

Let the colored resistor be as in the figure above. Its value can be read from the existing colors

and for each color there is a number corresponding to it. Where

$R=ab.10^{c} \pm d\%$

You write the number ab. It is not a product, but rather a number. Its ones are the number b and its tens is the number a. d% represents accuracy in the design. The number c is called the multiplier.

As for accuracy d%

Silver = 10%, Gold = 5%,

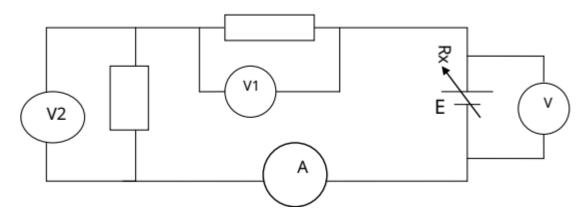
Note: If the number of colors on the resistor is 6, the reading is as follows

- The first three colors: record numbers (ones, tens, hundreds)
- Fourth color: multiplier (power of ten)
- Fifth color: precision in design
- Sixth color: temperature coefficient

الرقم	اللون
2-	الفضي
1-	الذهبي
0	الأسود
1	البني
2	الأحمر
3	البرتقالي
4	الأصفر
5	الأخضر
6	الأزرق
7	البنفسجي
8	الرمادي
9	الأبيض

III Used equipment

- Ampermeter: with different calibers and scales (ladder), connected in series with the electrical element to be measured.

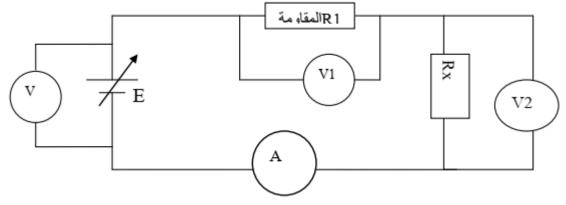

- Voltmeter: connected in parallel with the electrical element to be measured, the potential difference between its two ends

- Electric current generator: the cycle of generating alternating electric current between the two poles

- Fixed and variable resistors, connecting wires.

IV Experiment

I- Achieve the electrical circuit shown in the following figure $R1=0.1K\Omega$


Change the generator voltage E from 0 to 25V and fill out the following table

E (V)		meter		Voltm	eter1			Voltmeter 2				
	Caliber Ladder A LOding (MA)I				Caliber The ladder reading V1(V)				Caliber Ladder A toding 2(V)V			
0												
5												
10												
15												
20												
25									R2			

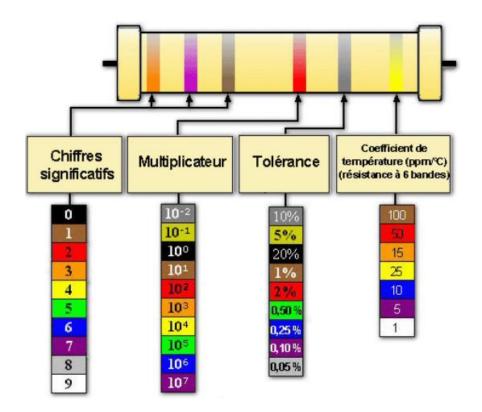
- 1- Notice the sum of the two voltages recorded on the two voltmeters?
- 2- Draw the graph $V_1=f_1(I)$? Compare the value of the slope of the line with the value of R_1 ,

What do you conclude?

- 3- Draw the graph $V_2=f_2(I)$? Calculate from the statement R_x ?
- 4- Calculate ΔR_x And $\Delta Rx/R_x$
- 5- Repeat the experiment using alternating current
- 6- What is your conclusion from this experience?
- II- Achieve the electrical circuit shown in the following figure $R_2=1K\Omega$

Questions:

1- Fill out the following table:


R1(KΩ)			V1	(v)		V2(v)						
	Caliber	Alice did not	reading	V1	Δv	Δv/v	Caliber	A t O ce	reading	V2	Δv	∆v/v
0												
1												
2												
3												
4												
5												
6												
7												
8												
9												
10												

2- Notice the sum of the two voltages recorded on the two voltmeters?

3- Draw the following two graphic curves $V_1=f_1(R_1)$ and $V_2=f(R_1)$ on the same millimeter paper?

4- Interpret the curve (is it consistent with theory)?

5- What is your general conclusion?

