Mohamed Khider University of Biskra Faculty of Exact Sciences and Natural and Life Sciences

1st year LMD – SNV Biology Subject: Chemistry 1

Academic year: 2023/2024

Applied exercises series No. 1

(Fundamentals of chemistry)

Exercise 1:

$^{A}_{Z}X^{q}$

1. Numerical indications in the three positions A, Z and q can be given to the symbol X of an element. What exactly does each of them mean?

2. Give the numbers of protons, electrons and neutrons of the different elements:

 ${}^{59}_{28}Ni$, ${}^{127}_{53}I^-$, ${}^{27}_{13}Al^{3+}$, ${}^{9}_{4}Be$

3. Calculate the mass of the Beryllium atom in grams and atomic mass units (a.u.m.). *We give:* $m_p=1.67 \ 10^{-27}$; $m_N=1.67 \ 10^{-27}$; $m_e=9.11 \ 10^{-31}$ (en Kg).

Exercise 2:

1. Calculate the charge of ${}^{A}_{Z}X^{q}$ an iron core (Fe, A=56, Z=26)

2. An atom has the symbol^A_zX its nucleus has a charge equal to 1.12 10^{-18} C and it has 7 neutrons.

Determine A and Z.

Exercise 3:

1. Four nuclides A, B, C and D have nuclei made up as shown below:

	А	В	С	D
Protons number	21	22	22	20
Neutrons number	26	25	27	27
Masses number	47	47	49	47

Are there isotopes among these four nuclides?

2. Magnesium is a mixture of the following three isotopes: ${}^{24}Mg$ (78.99%); ${}^{25}Mg$ (?); ${}^{26}Mg$ (11.01%).

a. Calculate the abundance of the second isotope.

b. Calculate the average relative atomic mass (isotope average) of magnesium.

Mohamed Khider University of Biskra Faculty of Exact Sciences and Natural and Life Sciences

1st year LMD – SNV Biology Subject: Chemistry 1

Academic year: 2023/2024

Applied exercises series No. 2

(Nuclear reactions and radiation)

Exercise 1:

Complete the following nuclear reactions and indicate their nature:

Exercise 2:

The β - decay period of carbon-14 is 5.7 10³ years.

- 1. Write the decay reaction of carbon-14.
- 2. Calculate the decay constant λ .
- 3. Calculate the time after which 90% of the element has disintegrated.

Exercise 3:

Write in detail the following reactions and complete them with the missing particles:

$${}^{43}_{20}Ca(?, p) {}^{46}_{21}Sc ; {}^{14}_{7}N(?, \gamma) {}^{15}_{7}N ; {}^{26}_{12}Mg(?, p) {}^{27}_{12}Mg ; {}^{212}_{84}Po(\alpha) ; {}^{106}_{47}Ag(\beta)$$