Chapter 1

SINGLE, DOUBLE AND TRIPLE
INTEGRALS

In this chapter I designates a non-trivial interval of R and K the set of real numbers or

complexes.

1.1 Simple integrals

1.1.1 Reminders

Définition 1.1.1 (Primitive) Let f and F be functions of I in K, F is a primitive of f on I

when F is differentiable on I and Yz € I, F(z) = f(x).

Proposition 1.1.1 If f admits an antiderivative on I then it admits an infinity of them all

equal to a constant.

Proposition 1.1.2 Let f and g € F(I,K), F be a primitive of f on I and G be a primitive of

gonl.

1) Va, B € K, (aF + BG) is an antiderivative of (af + Bg) on I.
2) Re(F) (resp. Zm(F')) is an antiderivative on I of Re(f) (resp. Zm(f)).
Exemple 1.1.1 (Search for a primitive of f by transforming expressions) 1) f:t —

1
tt—1

we decompose into simple elements
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2) f 1t — tan®t we reveal a usual primitive
3) f:t — sin*t we linearize

4) f:t — tcos(wx)e®® use f(x) = Re(e*Tiw?)

Exemple 1.1.2 f :t — cos®tsin®t we make du™ appear. This method can replace lineariza-

tion for products of the type cosP x sin? x with p or q impairs.

Définition 1.1.2 (Integral) Let a,b € R,a < b and f : [a,b] — R be a continuous function.
b

The integral from a to b of f is the real denoted [ f(t)dt which is equal to the algebraic area of
a

the domain delimited by the curve representative of f, the axis (Ox) and the lines © = a and

x = b, expressed in area unit

b a
- Extension to any two reals a and b: If b < a, we set [ f(t)dt = — [ f(t)dt.
a b

- Extension to functions with complex values: Let f C F(I,C) is continuous, for all real numbers

b b b
a and b of I, we set [ f(¢t)dt = [Re(f)(t)dt + i [ Im([f)(t)dt.

Sy gy

Figure 1.1: Integral Definition.

b b b
Remarque 1.1.1 The integration variable is silent i.e. [ f(t)dt = [ f(z)dz = [ f(u)du = ...

Proposition 1.1.3 (Properties of the integral) Let f and g be continuous on I with values

mn K and a,b and c three real numbers of 1.

a

b a
[f)dt =0 et [ f(t)dt = —bff(t)dt.

Chasles relation: fbf(t)dt: ff(t)dt+fbf(t)dt
b b

b
Linearity: Vo, B € R, [[af(t) + Bg(t)]dt = a [ f(t)dt + 3 [ g(t)dt

a

b
Positivity: St a <b et f >0 sur [a,b] alors [ f(t)dt >0

b b
Growth of the integral: if a <b and f < g on [a,b] then [ f(t)dt < [ g(t)dt
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b

[ f(t)dt

a

b
Triangle inequality: If a < b then < [|f@)|dt

1.1.2 Link between integrals and primitives of a function

Théoreme 1.1.1 (Fundamental theorem of analysis) Let f be a continuous function on I

x

with values in K, F : x — [ f(t)dt is the unique primitive of f on I which cancels out at a.
a

Consequences:

e Any continuous function on I admits an infinity of primitives on I. Let a be fixed in I,

the set of primitives of f on I is {  — [ f(¢)dt + k , k describes K}.

e Let G be any primitive of f on I and a € I, we have: Vz € I,G(z) = G(a) + [ f(t)dt.
e The notation: [ f = [ f(t)dt denotes any primitive of f on I. For example: [, zdz =
T T

12

> + k, where k € R. Attention, here the integration variable is no longer silent.

b
Corollaire 1.1.1 Let f be a continuous function on I Na,b € I, [ f(t)dt = [F(t)]° = F(b)—F(a)

a

where F' is any primitive of f on I.

1.1.3 Integration by parts formula

Définition 1.1.3 Let f : I — K, we say that f is of class C* on I when f is differentiable
on I with f continues on I. The set of functions of class C' on I with values in K is denoted

CYI,K).
b

Théoreme 1.1.2 If u and v are two functions of class C* on I then Va,b € I, [u(t)d(t)dt =
a

b
[u(t)v(®)]s, — [ a(t)o(t)dt

1 e
Exemple 1.1.3 (Classic examples for the calculation of integral) [ ze”dx cmdft2 In tdt
0 1

x

Exemple 1.1.4 (Classic examples for calculating primitive) [Intdt et [ xarctanzdz. We
1

can directly use the IPP formula when u and v are of class C* on I: I: Vx € I, [u(t)d(t)dt =

u(t)v(t) — [a(t)v(t)dt (Be careful to validate the hypotheses of the theorem).
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1.1.4 Variable change formula

Théoreme 1.1.3 Let f continue on I and ¢ : [a,b] — I, of class C* on [a,b]. We have

b M) e
/ f@)d@)de — | f)de
a Sy w(a)

1.1.5 Applications
Application to the calculation of integrals

15! case: We want to use the change of variable in the sense (1): We set ¢(z) =t
Method: e We replace ¢(x) by t
e We replace ¢(x)dx by dt.
e We modify the limits of the integral.
e Example: b} % by setting e®* =t
274 case: We want to use the change of variable in the direction (2): We set t = o(x)
Method: e We determine a and b and we verify that ¢ is of class C! on [a, b].
e We replace ¢(x) by t.
e We replace dt by 4(z)dz.

e We modify the limits of the integral.

1
e Example: [ V1 — ¢2dt by setting ¢ = sinz. Be careful to validate the hypotheses of
0

the theorem.

Application to the calculation of primitives

15t case: We want to use the change of variable in the direction (1)

Méthode : ® On pose le changement de variable choisi: avec de classe C! sur un intervalle de R,

a valeurs dans [
e We then have: dt = ¢(z)dz.
e We obtain: [ f(p(z))¢(z)de = [ f(t)dt = F(t) = F(p(z)) where F is an

antiderivative of f on I.
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Exemple 1.1.5 [ on |0; [ by setting tan(x/2) = t.

1—sinz
274 case: We want to use the change of variable in the sense (2): We must use a bijective change

of variable in order to be able to return to the initial variable.

Method: e We set: t = () with ¢ bijective of J on I, where J interval of and of class C! on
J.

e On a alors: dt = ¢(z)dx

e We obtain: [ f(t)dt = [ f(p(z))p(z)dz = G(z) = G(¢~1(t)) where G is an

antiderivative of (foy)xy on J.

Exemple 1.1.6 [ V12 —3 on I =]—/3,V3|, setting t — 3sinz = p().

1
To know how to do without help: Primitive of f : z + ——————— on an interval I where
axr® +bxr +c

ar® +bx+c#0

15" case: ax? + bx + c has two real roots 1 and x2: We decompose f into simple elements: Va €

A B
I, + with real A and B. We obtain Vz € I, [ f(z)dz = Aln|z — 21|+ Bln |z — a4].
rT—mT X — X2
dz
Exemple 1.1.7 [ o on|—1,1].
nd 2 A :
2" case: ax” + bx + ¢ has a double real root zg: Va € I, f(z) = (72 with real A. We
r — o
—A
obtain Vx € I, r)dr = —
f Hads = =

Exemple 1.1.8 fdix on |0, +oo|

pie 4.2 42 + 4z + 1 ’

374 case: ax? + bx + ¢ has no real roots: A = b2 — dac < 0. We write ax? + bx + ¢ in canonical

b\? A b\? o,

b
with A real, A > 0. We set = + 2% = t, change of variable therefore affines C! and bijective of
a

form

ar’ +br+c=a

R on R. We obtain Vx € I,

1 fodt 1 t 1 z+ 2
/f(x)dw—a/w—aAarctan <A>—aAarctan< " )
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1.2 Double integrals

Multiple integrals constitute the generalization of so-called simple integrals: that is to say the
integrals of a function of a single real variable. Here we focus on generalization to functions
with a greater number of variables (two or three). Recall that a real function f, defined on
an interval [a,b], is said to be Riemann integrable if it can be framed between two staircase
functions; hence any continuous function is integrable. The integral of f over [a,b], denoted
fb f(t)dt, is interpreted as the area between the graph of f, the axis (Xo0X) and the lines of
unations x = a,a = b. By subdividing [a, b] into n subintervals [x;_1,x;] of the same length

Aa::b_a

, we define the integral of f over [a,b] by:

n—-—+00 4

b n
/f(m)d$ = lim Z f(a;) (z; — zioq), a; € [Ti—1,x]
a 1=1

where f (a;) (x; — x;—1) represents area of the base rectangle [z;_1, z;] and height f (a;):

Figure 1.2: Principle of double integral.

1.2.1 Principle of the double integral on a rectangle

Let f be the real function of the two variables x and y, continuous on a rectangle D = [a, b] X [¢, d]
of R2. Its representation is a surface S in the space provided with the reference (O, 7, 7, ?)
We divide D into sub-rectangles, in each sub-rectangle [x;_1,z;] X [y;—1,y;] we choose a point
M(x,y) and we calculate the image of (z,y) for the function f. The sum of the volumes of the
columns whose base is sub-rectangles and the height f(z,y) is an approximation of the volume
between the plane Z = 0 and the surface S. When the grid becomes sufficiently “fine” so that

the diagonal of each sub-rectangle tends towards 0, this volume will be the limit of the Riemann
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sums and we note it:

//f(x,y)dxdy:nin}roo(b_‘?lgd_c) ) f<a+i(b;a),c+j(d;0))_
D

1<ign;1<j<n

Z» )
Z
{:\\ z=f(x.y)
N\
)
cﬂ d N
/// e ¥
YA ) E N Y
o W _R_ 7.
b /,’ =
ya Vd
s I
X ’ 4 b

Figure 1.3: Double integral.

Exemple 1.2.1 Using the definition, calculate [ (z + 2y) dzdy.
[0,1]%[0,1]

Remarque 1.2.1 A priori, the double integral is made to calculate volumes, just as the simple

integral was made to calculate an area.

In a double integral, the terminals at x and y must always be arranged in ascending order.

Théoreme 1.2.1 Let D be a bounded domain of R%. Then any continuous function f : D — R

18 integrable in the Riemann sense.

1.2.2 Properties of double integrals

1. The double integral over a domain D is linear:

[[ @+ sty =a [[ £ vy asdy+u [ [ o .00 doy
D D D
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0, or

2. If D and D are two domains such that DN D = a curve, or ¢, then:
isolated points, or
//f (2,y) dedy = //f (z,y) dedy + //f (z,y) dzdy.
DUD D D

3. If f(z,y) > 0 at any point in D, with f not identically zero, then [[ f (z,y) dzdy is strictly
D

positive.

4. SiV(z,y) € D, f (=,y) < g(z,y), then {)ff(m,y) drdy < [ g (z,y) dudy.
D

5. 'fff(x,y) dwdy‘ < [[1f (z,y)| dady.
D D

1.2.3 Fubini formulas

Théoreme 1.2.2 Let f be a continuous function on a rectangle D = [a,b] X [c,d] of R. We
have
Théoreme 1.2.3 Let [ be a continuous function on a rectangle D = [a,b] X [c,d] of R. We
have:

//f(x,wdxdy:/d /bf@c,y)dx dy.
D c a

So we calculate a double integral over a rectangle by calculating two single integrals:

e By first integrating with respect to = between a and b (leaving y constant). The result is

a function of y.

e By integrating this expression of yy between ¢ and d. Alternatively, we can do the same by

integrating first at y and then at x.

Exemple 1.2.2 Calculation of I =  [[  sin(x 4 y)dzdy. According to Fubini, we have:
[0.5]x[0.5]
I:/ /sin(x—i—y)da: dy:/ /sin(x+y)dy dx:/(cosy—l—siny)dy:[siny—cosy]g:2.
0 |o 0o |0 0

In this example z and y play the same role.
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1
Exemple 1.2.3 Calculation of I = [[ ————=dxdy. Let’s calculate
0,1x[2,5 (1 + 2+ 2y)

571 5
1 1
| (S B
1+:B—|—2y (I+z+2y)],
2 Lo 2
1 s 111
=3 In(1+2y) —In(2+2y)); = iln 0

Special case: If g : [a,b] — R and h : [¢,d] — R are two continuous functions, then

I gy d:vdy—<fg )(fh@)dy).

[a,b] X [c,d]

Exemple 1.2.4 Calculate the integral I =  [[  sin(x) cos(y)dzdy.
[0.5]x[0.5]

Théoreme 1.2.4 Let f be a continuous function on a bounded domain D of R%. The double

integral I = [[ f (z,y)dzdy is calculated in one of the following ways:
D

- If we can represent the domain D in the form D = {(z,y) € R?/f1 (z) <y < fa(2),a < z < b}

then
b | fa(x)
/ f(@,y) dedy = / / f(@,y)dy| du.
D a |fi(z)
- If we can represent the domain D in the form D = {(w, y) €ER?/g1 () <2< go(z),c <y < d},
then:
d | g2(z)
/ f(@,y) dedy = / / f(@,y)de | dy.
D ¢ lgi(x)

- If both representations are possible, the two results are obviously equal.

.z  Z
<, 7o) e, 2D
(: - N ™
T T H \1 :
P! T dy ¢ ‘x\j Cod oy
R Vd R
, L : ) . 11.\,» ,ﬁ
b AN Ly R0 b i
. / L
y=h(x) X= gfy) x=gly)
Figure 1.4: Theorem ilustration.
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Figure 1.5: The domain D.

Exemple 1.2.5 Calculate the integral [[ (562 +y2) dxdy with D 1is the triangle with vertices
D

(0,1),(0,—1) and (1,0). For this we will define D analytically by the inequalities:

D:{(m,y)eRz/m—lgygl—x,Ongl}

l1—x

1 1 L
1
//a:+y dxdy:/ / :c—i—y dy dx:/[:cy—i— ] d:c:§.
-1
0 0

-1

Exemple 1.2.6 Calculate I = [[ (z + 2y) dzdy on the domain D formed by the union of the
D

left part of the unit disk and the triangle of vertices (0,—1),(0,1) and (2,1). We have

1 Vy+1 1
:/ / (x + 2y) dz dy:/(3y+3y2+2y\/1—y2)dy:2.
-1 |- /ioe 1

Exemple 1.2.7 Calculate the integral I = [ exzdmdy where D = {(az,y) cER?/0<y<z< 1}.
D
The domain is the interior of the triangle limited by the x axis, the line x = 1 and the line y = x.

In this case we are obliged to integrate first with respect to y then with respect to x, because the
1Tz

primitive of the function is not expressed using the usual functions. Hence I = [ [f e$2dy} dx =
0 Lo

1 22 e—1

foe dx = 5
478 s[5 18

Exemple 1.2.8 Calculate I = [ L sin (y?) dy} de = [ | [sin (y?)dz| dy =1 [ 2ysin (y?) dy =
0 Loz 0 |0 0

1 —cos64

—
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1.2.4 Change of variable

We will have a result similar to that of the simple integral, where the change of variable x = ¢ ()

required us to replace the "dz” by 4 (t). It is the Jacobian which will play the role of the

derivativdl]

Théoreme 1.2.5 Let (u,v) € A — (z,y) = ¢ (u,v) € D be a bijection of class C' from

domain A to domain D. Let |J,| the absolute value of the determinant of the Jacobian matriz

//f(x,y)dxdy://fogp(u,v)|<]¢|dudv.
D A

of p. So, we have:

u

Figure 1.6: Changement de variable pour les intégrales doubles.

Exemple 1.2.9 Calculate [[ (x —1)*dzdy on the domain with
D

D={(z,y) eR?®/—1<z4+y<1l,-2<z—y<2}.

By changing the variable u = x+y,v = x —y. The domain D in (u,v) is therefore the rectangle

{-1<u<1,-2<v<2}. We also have x =

. The Jacobian of this change of

!We call the Jacobian matrix ¢ : R® — RP of the matrix with p rows and n columns:

Jp =

9¢p
Oxq

u-+v U—v
Y =
2
gwl gwl
e =
9p2 Do
Day .
dpp dpp
Doy D

The first column contains the partial derivatives of the coordinates of ¢ with respect to the first variable x1,
the second column contains the partial derivatives of the coordinates of ¢ with respect to the second variable x4

and so on.
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gz Oz /2 1/2

variables is J = JR = whose determinant s 7 And so
% 8—2 1/2 —1/2
1 AN 1
1:8/ /(u+v—2) du dv—%
—2 1

Remarque 1.2.2 - If |det (J,)| = 1, we obtain [[ f (z,y)dzdy = [[ f ¢ (u,v)] dudv
D A

- This allows us to use symmetries: if for example ¥V (z,y) € D,(—z,y) € D et f(—z,y) =
f(x,y) then [[ f(z,y)dedy =2 [[ f (x,y) dzdy, where D = D N (Rt x R).
D 5

Changing variable to polar coordinates

Let ¢ : R2 — R be such that (r,0) — (rcosf,7sinf). Then ¢ is of class C* on R? and its
rcosf —rsinf

Jacobian is Jy, (r,0) = = r. Then
sinf  rcosf

I—//f(a:,y)da:dy—//g(r,@)rdrd&.
D A

(8]

Figure 1.7: Changing variable to polar coordinates.

Exemple 1.2.10 1) Calculate by passing in polar coordinates I = ff sdxdy where D =

:E2+y
{(x,y) 1<+ 2 <4,2>0,y > 0} which represents a quarter of the part between the two

circles centered at the origin and with radii 1 and 2 (ring). From where

3 2
r
I:// 2+yd:/vd //7‘2 = ln2.
D 0 1
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2) Calculate the volume of a sphere V.= [[ /R? — 22 — y?dady and since the function is
z2+y2<R?

2 R 4
even with respect to the two variables, V =8 [ [V R? — r?rdrdf = §7rR2.
00

1.2.5 Applications

1. Calculation of area of a domain D: We have seen that f f f (z,y) dedy measures the
volume under the representation of f and above D. We alsoDhave the possibility of using
the double integral to calculate the area itself of domain D. To do this, simply take
f(z,y) = 1. Thus, the area A of the domain is A = [[ dzdy = [[ rdrds.

D A

2 2
Exemple 1.2.11 Calculate the area delimited by the ellipse with equation % + v _ 1.

a b2
Let us note the area ofthis ellipse A, therefore A= [ dxdy. By symmetry and passing
2 2
Z7+27<1

abrdrdf =

to generalized polar coordinates: x = ar cosf,y = brsin6, we obtain A = 4

Oy
Ct—

wab.

2. Calculation of the area of a surface: We call D the region of the XOY plane delim-

ited by the projection onto the XOY plane of the surface representative of a function f,

denoted ) . The surface area of > delimited by its projection D on the plane XOY is
given by A = = | +(5) +ldzdy
Oz dy
D

Exemple 1.2.12 Let’s calculate the area of the paraboloid ) = {(:L‘, y,2)z=22+14%,0< 2 < h},

Since the surface Y is equal to the graph of the function f (x,y) = 2% + y? defined above

the domain D = {(z,y) : 2* + y* < h}. From where:

vh
Aire (Z) - //\/4332 Fdy? 1 ldedy = 27r/ VAr? 4 1rdr = % (4h+ 1)
0
D

3. Mass and centers of inertia: If we note p(x,y) s the surface density of a plate A, its

mass is given by the formula M = //p (z,y) dxdy. And its center of inertia G = (zg, ya)
A
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is such that:

1
a:G:M//wp(x,y)dwdy
A
ve =57 [ [ v (@,y) dedy
A

Exemple 1.2.13 Determine the center of mass of a thin triangular metal plate whose

vertices are at (0,0),(1,0) et (0,2), knowing that its density is p(x,y) =1+ 3z +y.

1
M = // (z,y) dxdy = /
0

\
%2

8
1+39:+y)d:13dy:§

0/
. 1 2-2z
G:M//a:p(x,y)dxdy //x(l—i—&x—i—y)dmdy:z
A 0 0
12-22
—1// (@, ) dwd // (1432 +y) dedy = —
M yp\x,y)axray = Yy €z ymy_lG
A 0 0

4. The moment of inertia: The moment of inertia of a point mass M with respect to an

axis is defined by Mr?, where r is the distance between the mass and the axis. We extend
this notion to a metal plate which occupies a region D and whose density is given by
p(x,y), the moment of inertia of the plate with respect to the axis (XOX) is: I, =

/ / y2p (x,y) dedy. Similarly, the moment of inertia of the plate with respect to the axis

(yOy) is: Iy = //a:zp (z,y) dzdy. It is also interesting to consider the moment of inertia

relative to the origin: Ip = // (x2 + y2) p(z,y) dzxdy.

1.3 Triple integrals

The principle is the same as for double integrals, If (z,y,z) — f (z,y,2) € R is a continuous
function of three variables on a domain D of R3, we define [[[ f (z,y,2) dzdydz as sum limit of
D

the form:

Zf (i, vj, wi) (x5 — xi-1) (Y5 — yj—1) (2K — 2k—1)

Z'7j7k

Remarque 1.3.1 We have the same algebraic properties of double integrals: linearity, . ..
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1.3.1 Formules de Fubini

1. On a parallelepiped: Fubini’s theorem applies quite naturally when D = [a, b] X [c, d] %

le, f], we come down to calculating three simple integrals:

///f($,y,2)dxdyd22/ab [/Cd [/eff(w,y,z)dz] dy] da::/ef [/Cd [/abf(m,y,z)dx] dy:| dz = ...
b

Exemple 1.3.1 Calculate  [[[  (z + 3yz) dzdyd=.
[0,1]x[1,2]x[1,3]

2. On any bounded domain: o establish the treatment of the search for the integration

bounds. For a certain fixed z, varying between x;, and xyax, we cut out a surface D, in

D. We can then represent in the YOZ plane, then the treatment on D, is done as with

double integrals: I = f Tmax [ Ymax { f

Ymin

max f (2,1, 2) dz} dy} dx. Of course, we can swap the

Zmin Zmin

roles of x,y and z.

Figure 1.8: Triple integral.

Exemple 1.3.2 Calculate I = [[[ (:1:2 + yz) dxdydz in the domain
D

D={(z,y,2) :2>0,y>0,2>0,z+y+2h < 1}

I= / / / (22 + y2) dzdydz = /0 v [ /0 o [ /0 e (2 + yz) dy} dx] dz = %
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1.3.2 Changing variables

If we have a bijective map ¢ and class C! from domain A to domain D, defined by: (u,v,w) —

¢ (u,v,w) = (z,y,2). The formula for changing variables is: [[[ f (z,y,2)dzdydz = [[[ fo
D A

¢ (u,v,w) |Jy (u, v, w)| dudvdw. By noting |J,| the absolute value of the determinant of the

Jacobian.

Figure 1.9: Changing variables for triple integrales.

1. Calculation in cylindrical coordinates: In dimension 3, the cylindrical coordinates are

given by:
T =rcosf
y =rsinf
z=2z

The determinant of the Jacobian matrix of ¢ (1,0, 2) — (x,y, 2) is:

rcosf —rsinf 0

|Jol =| sin® rcosh® 0 |=rdrdddz

0 0 1

So we have

Omax Tmax Zmax
I= ///f (z,y,2)dxdydz = ///g(r, 0, z) rdrdfdz = / [/ [/ g(r,0,z) rdz} dr} do.
Qmin T'min Zmin
D A

Exemple 1.3.3 Calculate I = [[[ (332 + %+ 1) dxdydz or
1%

D:{(m,y,z):m2+y2§1, andOSzSZ}
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Figure 1.11: Cylindrical coordinates.

2 27 1 2w 2 1 9 1
1_// /r(r2+1)drd9dz_/ d@/ dz[(rQ—l—l)] = 4.
o Jo Jo 0 0 4 0

2. Calculation in spherical coordinates: In dimension 3, the spherical coordinates are

given by:

x = rsinf cos
y =rsinfsinp

z=rcosb

The determinant of the Jacobian matrix of ¢ (r,0,¢) — (x,y, 2) is

sinfcosp rcosfcosp —rsinfsing
|Jol = | sinfsing rcosfsing rsinfcosyp = 72 sin Odrdfdyp.

cos —rsin6 0
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Figure 1.12: Principle of calculation of the Jacobian in spherical coordinates.

So we have

I= ///f(a?,y,z) dxdydz = ///g('r,&,z) 2 sin Odrdfde.
D A

Exemple 1.3.4 Calculate I = [[[ zdzdydz, or
D
D= {(x,y,z) 2ty + 22 < R?, and z 20}.

The domain is the upper hemisphere (centered at the origin and of radius R), passing to

spherical coordinates:

21 % R T
I:/ dcp/ cosesinade/ r2dr = —R3
0 0 0 3

1.3.3 Applications

1. Volume: The volume of a body is given by V' = [[[ dzdydz such that D is the domain
D

delimited by this body.

Exemple 1.3.5 Calculate the volume of a sphere, V = [[]  dzxdydz, according to
224y2+22<R?
Dr: Fatima OUAAR University of Mohamed Kheidar, Biskra
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the property of symmetry: V =8 [[[ dxdydz where
D
D= {(x,y,z) ERY: 2+ +22<R? andz >0,y >0,z > 0}
2 2w R 2 AT s
from where V =8 [* dy [? sin0df [;" r*dr = ?R .

2. Mass, center and moments of inertia: Let y be the density of a solid which occupies

region V', then its mass is given by

M= ///u(:z:,y, 2) dadyds.
1%

The center of mass G = (z¢g, yg, 2¢) has coordinates.

Community Verification Icon

1

TG = M/// xp(z,y, z) dedydz.

v
1 (@1, 2) dadyd

Yo = 37 yu (x,y, z) dedydz.
v

2 —1///z (z,y, z) dedydz

G_M 2 ' Y yaz.
v

The moments of inertia with respect to the three axes are:

I, = /// (y2 + 22) w(z,y, z) dedyd:z.
\4

I, = /// (332 + zz) p(z,y, z) dedydz.
\4

I, = /// (y2 + :c2) w(x,y, z) dedydz.
\4

Exemple 1.3.6 Determine the center of mass of a solid of constant density, bounded by

the parabolic cylinder x = y* and the planes v = 2,2 =0 and v = 1.

1 1Tz 4
The mass is = [ Lf [f ,udz} da:] dy = ?'u, due to symmetry of the domain and pu with
12 Lo
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Figure 1.13: A solid bounded by the parabolic cylinder z = y? and the planes z = 2,z = 0 and
r =1.

respect to the OXZ plane, we has

1
ve =37 / / / ypdzdydz =
V —
. 1
_ "
g = M///zuda:dydz M/
\% 1

-1 |y L

<[=
—

i 5
/:de dx| dy = -
0

[ary
IIQQ
[
I

/zdz dx dyzi.
0
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