
Chapter 1

SINGLE, DOUBLE AND TRIPLE

INTEGRALS

In this chapter I designates a non-trivial interval of R and K the set of real numbers or

complexes.

1.1 Simple integrals

1.1.1 Reminders

Dé�nition 1.1.1 (Primitive) Let f and F be functions of I in K, F is a primitive of f on I

when F is di¤erentiable on I and 8x 2 I; �F (x) = f(x):

Proposition 1.1.1 If f admits an antiderivative on I then it admits an in�nity of them all

equal to a constant.

Proposition 1.1.2 Let f and g 2 F(I;K), F be a primitive of f on I and G be a primitive of

g on I.

1) 8�; � 2 K; (�F + �G) is an antiderivative of (�f + �g) on I.

2) Re(F ) (resp. Im(F )) is an antiderivative on I of Re(f) (resp. Im(f)).

Exemple 1.1.1 (Search for a primitive of f by transforming expressions) 1) f : t �!
1

t4 � 1 we decompose into simple elements
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2) f : t �! tan2 t we reveal a usual primitive

3) f : t �! sin4 t we linearize

4) f : t �! t cos(!x)e�x use f(x) = Re(e�+i!x)

Exemple 1.1.2 f : t �! cos2 t sin3 t we make �uun appear. This method can replace lineariza-

tion for products of the type cosp x sinq x with p or q impairs.

Dé�nition 1.1.2 (Integral) Let a; b 2 R; a � b and f : [a; b] ! R be a continuous function.

The integral from a to b of f is the real denoted
bR
a
f(t)dt which is equal to the algebraic area of

the domain delimited by the curve representative of f , the axis (Ox) and the lines x = a and

x = b, expressed in area unit

- Extension to any two reals a and b: If b < a, we set
bR
a
f(t)dt = �

aR
b

f(t)dt.

- Extension to functions with complex values: Let f � F(I;C) is continuous, for all real numbers

a and b of I, we set
bR
a
f(t)dt =

bR
a
Re(f)(t)dt+ i

bR
a
Im(f)(t)dt:

Figure 1.1: Integral De�nition.

Remarque 1.1.1 The integration variable is silent i.e.
bR
a
f(t)dt =

bR
a
f(x)dx =

bR
a
f(u)du = :::

Proposition 1.1.3 (Properties of the integral) Let f and g be continuous on I with values

in K and a; b and c three real numbers of I:
aR
a
f(t)dt = 0 et

bR
a
f(t)dt = �

aR
b

f(t)dt.

Chasles relation:
bR
a
f(t)dt =

cR
a
f(t)dt+

bR
c
f(t)dt

Linearity: 8�; � 2 R;
bR
a
[�f(t) + �g(t)] dt = �

bR
a
f(t)dt+ �

bR
a
g(t)dt

Positivity: Si a � b et f � 0 sur [a; b] alors
bR
a
f(t)dt � 0

Growth of the integral: if a � b and f � g on [a; b] then
bR
a
f(t)dt �

bR
a
g(t)dt
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Triangle inequality: If a � b then
����� bRa f(t)dt

����� � bR
a
jf(t)j dt

1.1.2 Link between integrals and primitives of a function

Théoreme 1.1.1 (Fundamental theorem of analysis) Let f be a continuous function on I

with values in K, F : x �!
xR
a
f(t)dt is the unique primitive of f on I which cancels out at a.

Consequences:

� Any continuous function on I admits an in�nity of primitives on I. Let a be �xed in I,

the set of primitives of f on I is { x �!
xR
a
f(t)dt+ k , k describes K}.

� Let G be any primitive of f on I and a 2 I, we have: 8x 2 I;G(x) = G(a) +
xR
a
f(t)dt:

� The notation:
R
I

f =
R
I

f(t)dt denotes any primitive of f on I. For example:
R
R xdx =

x2

2
+ k, where k 2 R. Attention, here the integration variable is no longer silent.

Corollaire 1.1.1 Let f be a continuous function on I,8a; b 2 I;
bR
a
f(t)dt = [F (t)]ba = F (b)�F (a)

where F is any primitive of f on I.

1.1.3 Integration by parts formula

Dé�nition 1.1.3 Let f : I ! K, we say that f is of class C1 on I when f is di¤erentiable

on I with f continues on I. The set of functions of class C1 on I with values in K is denoted

C1(I;K):

Théoreme 1.1.2 If u and v are two functions of class C1 on I then 8a; b 2 I;
bR
a
u(t)�v(t)dt =

[u(t)v(t)]ba �
bR
a
�u(t)v(t)dt

Exemple 1.1.3 (Classic examples for the calculation of integral)
1R
0

xexdx and
eR
1

t2 ln tdt

Exemple 1.1.4 (Classic examples for calculating primitive)
xR
1

ln tdt et
R
x arctanxdx. We

can directly use the IPP formula when u and v are of class C1 on I: I: 8x 2 I;
R
u(t)�v(t)dt =

u(t)v(t)�
R
�u(t)v(t)dt (Be careful to validate the hypotheses of the theorem).
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1.1.4 Variable change formula

Théoreme 1.1.3 Let f continue on I and ' : [a; b]! I, of class C1 on [a; b]. We have

bZ
a

f('(x)) �'(x)dx

(1)
�!
=

 �
(2)

'(b)Z
'(a)

f(t)dt:

1.1.5 Applications

Application to the calculation of integrals

1st case: We want to use the change of variable in the sense (1): We set '(x) = t

Method: � We replace '(x) by t

� We replace �'(x)dx by dt:

� We modify the limits of the integral.

� Example:
1R
0

dx

chx
by setting ex = t

2nd case: We want to use the change of variable in the direction (2): We set t = '(x)

Method: � We determine a and b and we verify that ' is of class C1 on [a; b]:

� We replace '(x) by t:

� We replace dt by �'(x)dx:

� We modify the limits of the integral.

� Example:
1R
0

p
1� t2dt by setting t = sinx: Be careful to validate the hypotheses of

the theorem.

Application to the calculation of primitives

1st case: We want to use the change of variable in the direction (1)

Méthode : � On pose le changement de variable choisi: avec de classe C1 sur un intervalle de R,

à valeurs dans I

� We then have: dt = �'(x)dx:

� We obtain:
R
f('(x)) �'(x)dx =

R
f(t)dt = F (t) = F ('(x)) where F is an

antiderivative of f on I.
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Exemple 1.1.5
R dx

1� sinx on ]0;�[ by setting tan(x=2) = t:

2nd case: We want to use the change of variable in the sense (2): We must use a bijective change

of variable in order to be able to return to the initial variable.

Method: � We set: t = '(x) with ' bijective of J on I, where J interval of and of class C1 on

J .

� On a alors: dt = �'(x)dx

� We obtain:
R
f(t)dt =

R
f('(x)) �'(x)dx = G(x) = G('�1(t)) where G is an

antiderivative of (fo')x �' on J:

Exemple 1.1.6
R p

t2 � 3 on I =
�
�
p
3;
p
3
�
, setting t� 3 sinx = '(x):

To know how to do without help: Primitive of f : x 7! 1

ax2 + bx+ c
on an interval I where

ax2 + bx+ c 6= 0

1sr case: ax2+ bx+ c has two real roots x1 and x2: We decompose f into simple elements: 8x 2

I;
A

x� x1
+

B

x� x2
with real A and B. We obtain 8x 2 I;

R
f(x)dx = A ln jx� x1j+B ln jx� x1j :

Exemple 1.1.7
R dx

x2 � 1 on ]� 1; 1[.

2nd case: ax2 + bx + c has a double real root x0: 8x 2 I; f(x) =
A

(x� x0)2
with real A. We

obtain 8x 2 I;
R
f(x)dx =

�A
(x� x0)

Exemple 1.1.8
R dx

4x2 + 4x+ 1
on ]0;+1[

3rd case: ax2 + bx+ c has no real roots: � = b2 � 4ac < 0. We write ax2 + bx+ c in canonical

form

ax2 + bx+ c = a

"�
x+

b

2a

�2
� �

4a2

#
� a

"�
x+

b

2a

�2
�A2

#

with A real, A > 0. We set x+
b

2a
= t, change of variable therefore a¢ nes C1 and bijective of

R on R. We obtain 8x 2 I,

Z
f(x)dx =

1

a

Z
dt

1 + t2
=

1

aA
arctan

�
t

A

�
� 1

aA
arctan

 
x+ b

2a

A

!
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1.2 Double integrals

Multiple integrals constitute the generalization of so-called simple integrals: that is to say the

integrals of a function of a single real variable. Here we focus on generalization to functions

with a greater number of variables (two or three). Recall that a real function f, de�ned on

an interval [a; b], is said to be Riemann integrable if it can be framed between two staircase

functions; hence any continuous function is integrable. The integral of f over [a; b], denoted
bR
a
f(t)dt, is interpreted as the area between the graph of f , the axis (XoX) and the lines of

equations x = a; a = b. By subdividing [a; b] into n subintervals [xi�1; xi] of the same length

�x =
b� a
n
, we de�ne the integral of f over [a; b] by:

bZ
a

f(x)dx = lim
n�!+1

nX
i=1

f (ai) (xi � xi�1) ; ai 2 [xi�1; xi]

where f (ai) (xi � xi�1) represents area of the base rectangle [xi�1; xi] and height f (ai):

Figure 1.2: Principle of double integral.

1.2.1 Principle of the double integral on a rectangle

Let f be the real function of the two variables x and y, continuous on a rectangleD = [a; b]�[c; d]

of R2. Its representation is a surface S in the space provided with the reference
�
O;
�!
i ;
�!
j ;
�!
k
�
.

We divide D into sub-rectangles, in each sub-rectangle [xi�1; xi] � [yi�1; yi] we choose a point

M(x; y) and we calculate the image of (x; y) for the function f . The sum of the volumes of the

columns whose base is sub-rectangles and the height f(x; y) is an approximation of the volume

between the plane Z = 0 and the surface S. When the grid becomes su¢ ciently ��ne�so that

the diagonal of each sub-rectangle tends towards 0, this volume will be the limit of the Riemann
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sums and we note it:

ZZ
D

f (x; y) dxdy = lim
n�!+1

(b� a) (d� c)
n2

X
1�i�n;1�j�n

f

�
a+ i

(b� a)
n

; c+ j
(d� c)
n

�
:

Figure 1.3: Double integral.

Exemple 1.2.1 Using the de�nition, calculate
RR

[0;1]�[0;1]
(x+ 2y) dxdy:

Remarque 1.2.1 A priori, the double integral is made to calculate volumes, just as the simple

integral was made to calculate an area.

In a double integral, the terminals at x and y must always be arranged in ascending order.

Théoreme 1.2.1 Let D be a bounded domain of R2. Then any continuous function f : D �! R

is integrable in the Riemann sense.

1.2.2 Properties of double integrals

1. The double integral over a domain D is linear:

ZZ
D

(�f + �g) (x; y) dxdy = �

ZZ
D

f (x; y) dxdy + �

ZZ
D

g (x; y) dxdy:
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2. If D and �D are two domains such that D \ �D =

8>>>><>>>>:
;, or

a curve, or

isolated points, or

9>>>>=>>>>;, then:
ZZ
D[ �D

f (x; y) dxdy =

ZZ
D

f (x; y) dxdy +

ZZ
�D

f (x; y) dxdy:

3. If f(x; y) � 0 at any point in D, with f not identically zero, then
RR
D

f (x; y) dxdy is strictly

positive.

4. Si 8 (x; y) 2 D; f (x; y) � g (x; y), then
RR
D

f (x; y) dxdy �
RR
�D

g (x; y) dxdy:

5.

����RR
D

f (x; y) dxdy

���� � RR
D

jf (x; y)j dxdy:

1.2.3 Fubini formulas

Théoreme 1.2.2 Let f be a continuous function on a rectangle D = [a; b] � [c; d] of R. We

have

Théoreme 1.2.3 Let f be a continuous function on a rectangle D = [a; b] � [c; d] of R. We

have: ZZ
D

f (x; y) dxdy =

dZ
c

24 bZ
a

f (x; y) dx

35 dy:
So we calculate a double integral over a rectangle by calculating two single integrals:

� By �rst integrating with respect to x between a and b (leaving y constant). The result is

a function of y.

� By integrating this expression of y between c and d. Alternatively, we can do the same by

integrating �rst at y and then at x.

Exemple 1.2.2 Calculation of I =
RR

[0;�2 ]�[0;
�
2 ]
sin (x+ y) dxdy: According to Fubini, we have:

I =

�
2Z
0

264
�
2Z
0

sin (x+ y) dx

375 dy =
�
2Z
0

264
�
2Z
0

sin (x+ y) dy

375 dx =
�
2Z
0

(cos y + sin y) dy = [sin y � cos y]
�
2
0 = 2:

In this example x and y play the same role.
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Exemple 1.2.3 Calculation of I =
RR

[0;1]�[2;5]

1

(1 + x+ 2y)2
dxdy. Let�s calculate

I =

5Z
2

24 1Z
0

1

(1 + x+ 2y)2
dx

35 dy = 5Z
2

�
1

(1 + x+ 2y)

�1
0

dy

=
1

2
[ln (1 + 2y)� ln (2 + 2y)]52 =

1

2
ln
11

10
:

Special case: If g : [a; b] �! R and h : [c; d] �! R are two continuous functions, thenRR
[a;b]�[c;d]

g(x)h(y)dxdy =

 
bR
a
g(x)dx

! 
dR
c
h(y)dy

!
:

Exemple 1.2.4 Calculate the integral I =
RR

[0;�2 ]�[0;
�
2 ]
sin (x) cos(y)dxdy:

Théoreme 1.2.4 Let f be a continuous function on a bounded domain D of R2. The double

integral I =
RR
D

f (x; y) dxdy is calculated in one of the following ways:

- If we can represent the domain D in the form D =
�
(x; y) 2 R2=f1 (x) � y � f2 (x) ; a � x � b

	
then ZZ

D

f (x; y) dxdy =

bZ
a

264 f2(x)Z
f1(x)

f (x; y) dy

375 dx:
- If we can represent the domain D in the form D =

�
(x; y) 2 R2=g1 (x) � x � g2 (x) ; c � y � d

	
,

then: ZZ
D

f (x; y) dxdy =

dZ
c

264 g2(x)Z
g1(x)

f (x; y) dx

375 dy:
- If both representations are possible, the two results are obviously equal.

Figure 1.4: Theorem ilustration.
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Figure 1.5: The domain D.

Exemple 1.2.5 Calculate the integral
RR
D

�
x2 + y2

�
dxdy with D is the triangle with vertices

(0; 1); (0;�1) and (1; 0). For this we will de�ne D analytically by the inequalities:

D =
�
(x; y) 2 R2=x� 1 � y � 1� x; 0 � x � 1

	

ZZ
D

�
x2 + y2

�
dxdy =

1Z
0

24 1�xZ
x�1

�
x2 + y2

�
dy

35 dx = 1Z
0

�
x2y +

y3

3

�1�x
x�1

dx =
1

3
:

Exemple 1.2.6 Calculate I =
RR
D

(x+ 2y) dxdy on the domain D formed by the union of the

left part of the unit disk and the triangle of vertices (0;�1); (0; 1) and (2; 1). We have

I =

1Z
�1

2664
p
y+1Z

�
p
1�y2

(x+ 2y) dx

3775 dy =
1Z

�1

�
3y + 3y2 + 2y

p
1� y2

�
dy = 2:

Exemple 1.2.7 Calculate the integral I =
RR
D

ex
2
dxdy where D =

�
(x; y) 2 R2=0 � y � x � 1

	
.

The domain is the interior of the triangle limited by the x axis, the line x = 1 and the line y = x.

In this case we are obliged to integrate �rst with respect to y then with respect to x, because the

primitive of the function is not expressed using the usual functions. Hence I =
1R
0

�
xR
0

ex
2
dy

�
dx =

1R
0

xex
2
dx =

e� 1
2
.

Exemple 1.2.8 Calculate I =
4R
0

�
8R
2x

sin
�
y2
�
dy

�
dx =

8R
0

" y
2R
0

sin
�
y2
�
dx

#
dy =

1

4

8R
0

2y sin
�
y2
�
dy =

1� cos 64
4

:
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1.2.4 Change of variable

We will have a result similar to that of the simple integral, where the change of variable x = ' (t)

required us to replace the "dx" by �' (t). It is the Jacobian which will play the role of the

derivative1.

Théoreme 1.2.5 Let (u; v) 2 � �! (x; y) = ' (u; v) 2 D be a bijection of class C1 from

domain � to domain D. Let jJ'j the absolute value of the determinant of the Jacobian matrix

of '. So, we have: ZZ
D

f (x; y) dxdy =

ZZ
�

f � ' (u; v) jJ'j dudv:

Figure 1.6: Changement de variable pour les intégrales doubles.

Exemple 1.2.9 Calculate
RR
D

(x� 1)2 dxdy on the domain with

D =
�
(x; y) 2 R2=� 1 � x+ y � 1;�2 � x� y � 2

	
:

By changing the variable u = x+ y; v = x� y. The domain D in (u; v) is therefore the rectangle

f�1 � u � 1;�2 � v � 2g : We also have x = u+ v

2
; y =

u� v
2

. The Jacobian of this change of

1We call the Jacobian matrix ' : Rn �! Rp of the matrix with p rows and n columns:

J' =

0BBBBB@
@'1
@x1

@'1
@x2

::::: @'1
@xn

@'2
@x1

@'2
@x1

::::: @'2
@xn

: : ::::: :
: : ::::: :

@'p
@x1

@'p
@x2

:::::
@'p
@xn

1CCCCCA
The �rst column contains the partial derivatives of the coordinates of ' with respect to the �rst variable x1,

the second column contains the partial derivatives of the coordinates of ' with respect to the second variable x2
and so on.
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variables is J =

0B@ @x
@u

@x
@v

@y
@u

@y
@v

1CA =

0B@ 1=2 1=2

1=2 �1=2

1CA whose determinant is
�1
2
. And so

I =
1

8

2Z
�2

24 1Z
�1

(u+ v � 2)2 du

35 dv = 136

3
:

Remarque 1.2.2 - If jdet (J')j = 1, we obtain
RR
D

f (x; y) dxdy =
RR
�

f [' (u; v)] dudv

- This allows us to use symmetries: if for example 8 (x; y) 2 D; (�x; y) 2 D et f (�x; y) =

f (x; y) then
RR
D

f (x; y) dxdy = 2
RR
�D

f (x; y) dxdy; where �D = D \ (R+ � R) :

Changing variable to polar coordinates

Let ' : R2 �! R be such that (r; �) �! (r cos �; r sin �). Then ' is of class C1 on R2, and its

Jacobian is J' (r; �) =

�������
r cos � �r sin �

sin � r cos �

������� = r. Then
I =

ZZ
D

f (x; y) dxdy =

ZZ
�

g (r; �) rdrd�:

Figure 1.7: Changing variable to polar coordinates.

Exemple 1.2.10 1) Calculate by passing in polar coordinates I =
RR
D

1
x2+y2

dxdy where D =�
(x; y) : 1 � x2 + y2 � 4; x � 0; y � 0

	
which represents a quarter of the part between the two

circles centered at the origin and with radii 1 and 2 (ring). From where

I =

ZZ
D

1

x2 + y2
dxdy =

�
2Z
0

2Z
1

r

r2
drd� =

�

2
ln 2:
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2) Calculate the volume of a sphere V =
RR

x2+y2<R2

p
R2 � x2 � y2dxdy and since the function is

even with respect to the two variables, V = 8

�
2R
0

RR
0

p
R2 � r2rdrd� = 4

3
�R2.

1.2.5 Applications

1. Calculation of area of a domain D: We have seen that
RR
D

f (x; y) dxdy measures the

volume under the representation of f and above D. We also have the possibility of using

the double integral to calculate the area itself of domain D. To do this, simply take

f(x; y) = 1. Thus, the area A of the domain is A =
RR
D

dxdy =
RR
�

rdrd�.

Exemple 1.2.11 Calculate the area delimited by the ellipse with equation
x2

a2
+
y2

b2
= 1.

Let us note the area ofthis ellipse A, therefore A =
RR

x2

a2
+ y2

b2
<1

dxdy. By symmetry and passing

to generalized polar coordinates: x = ar cos �; y = br sin �, we obtain A = 4

�
2R
0

1R
0

abrdrd� =

�ab:

2. Calculation of the area of a surface: We call D the region of the XOY plane delim-

ited by the projection onto the XOY plane of the surface representative of a function f ,

denoted
P
. The surface area of

P
delimited by its projection D on the plane XOY is

given by A =
ZZ
D

s�
@f

@x

�2
+

�
@f

@y

�2
+ 1dxdy

Exemple 1.2.12 Let�s calculate the area of the paraboloid
P
=
�
(x; y; z) : z = x2 + y2; 0 � z � h

	
.

Since the surface
P
is equal to the graph of the function f (x; y) = x2 + y2 de�ned above

the domain D =
�
(x; y) : x2 + y2 � h

	
. From where:

Aire
�X�

=

ZZ
D

p
4x2 + 4y2 + 1dxdy = 2�

Z p
h

0

p
4r2 + 1rdr =

�

6
(4h+ 1)3=2 :

3. Mass and centers of inertia: If we note � (x; y) s the surface density of a plate �, its

mass is given by the formula M =

ZZ
�

� (x; y) dxdy. And its center of inertia G = (xG; yG)
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is such that:

xG =
1

M

ZZ
�

x� (x; y) dxdy

yG =
1

M

ZZ
�

y� (x; y) dxdy

Exemple 1.2.13 Determine the center of mass of a thin triangular metal plate whose

vertices are at (0; 0); (1; 0) et (0; 2), knowing that its density is � (x; y) = 1 + 3x+ y.

M =

ZZ
�

� (x; y) dxdy =

1Z
0

2�2xZ
0

(1 + 3x+ y) dxdy =
8

3

xG =
1

M

ZZ
�

x� (x; y) dxdy =

1Z
0

2�2xZ
0

x (1 + 3x+ y) dxdy =
3

8

yG =
1

M

ZZ
�

y� (x; y) dxdy =

1Z
0

2�2xZ
0

y (1 + 3x+ y) dxdy =
11

16

4. The moment of inertia: The moment of inertia of a point mass M with respect to an

axis is de�ned by Mr2, where r is the distance between the mass and the axis. We extend

this notion to a metal plate which occupies a region D and whose density is given by

� (x; y), the moment of inertia of the plate with respect to the axis ( �XOX) is: Ix =ZZ
D

y2� (x; y) dxdy. Similarly, the moment of inertia of the plate with respect to the axis

(�yOy) is: Iy =
ZZ
D

x2� (x; y) dxdy. It is also interesting to consider the moment of inertia

relative to the origin: IO =
ZZ
D

�
x2 + y2

�
� (x; y) dxdy.

1.3 Triple integrals

The principle is the same as for double integrals, If (x; y; z) �! f (x; y; z) 2 R is a continuous

function of three variables on a domain D of R3, we de�ne
RRR
D

f (x; y; z) dxdydz as sum limit of

the form: X
i;j;k

f (ui; vj ; wk) (xi � xi�1) (yj � yj�1) (zk � zk�1)

Remarque 1.3.1 We have the same algebraic properties of double integrals: linearity, . . .
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1.3.1 Formules de Fubini

1. On a parallelepiped: Fubini�s theorem applies quite naturally when D = [a; b]� [c; d]�

[e; f ], we come down to calculating three simple integrals:

ZZZ
D

f (x; y; z) dxdydz =

Z b

a

�Z d

c

�Z f

e
f (x; y; z) dz

�
dy

�
dx =

Z f

e

�Z d

c

�Z b

a
f (x; y; z) dx

�
dy

�
dz = :::

Exemple 1.3.1 Calculate
RRR

[0;1]�[1;2]�[1;3]
(x+ 3yz) dxdydz.

2. On any bounded domain: o establish the treatment of the search for the integration

bounds. For a certain �xed x, varying between xmin and xmax, we cut out a surface Dx in

D. We can then represent in the Y OZ plane, then the treatment on Dx is done as with

double integrals: I =
R xmax
xmin

hR ymax
ymin

hR zmax
zmin

f (x; y; z) dz
i
dy
i
dx. Of course, we can swap the

roles of x; y and z.

Figure 1.8: Triple integral.

Exemple 1.3.2 Calculate I =
RRR
D

�
x2 + yz

�
dxdydz in the domain

D = f(x; y; z) : x � 0; y � 0; z � 0; x+ y + 2h � 1g

I =

ZZZ
D

�
x2 + yz

�
dxdydz =

Z 1=2

0

�Z 1�2z

0

�Z 1�2z�x

0

�
x2 + yz

�
dy

�
dx

�
dz =

1

96
:
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1.3.2 Changing variables

If we have a bijective map ' and class C1 from domain � to domain D, de�ned by: (u; v; w) �!

' (u; v; w) = (x; y; z). The formula for changing variables is:
RRR
D

f (x; y; z) dxdydz =
RRR
�

f �

' (u; v; w) jJ' (u; v; w)j dudvdw: By noting jJ'j the absolute value of the determinant of the

Jacobian.

Figure 1.9: Changing variables for triple integrales.

1. Calculation in cylindrical coordinates: In dimension 3, the cylindrical coordinates are

given by: 8>>>><>>>>:
x = r cos �

y = r sin �

z = z

The determinant of the Jacobian matrix of ' (r; �; z) �! (x; y; z) is:

jJ'j =

����������
r cos � �r sin � 0

sin � r cos � 0

0 0 1

����������
= rdrd�dz

So we have

I =

ZZZ
D

f (x; y; z) dxdydz =

ZZZ
�

g (r; �; z) rdrd�dz =

Z �max

�min

�Z rmax

rmin

�Z zmax

zmin

g (r; �; z) rdz

�
dr

�
d�:

Exemple 1.3.3 Calculate I =
RRR
V

�
x2 + y2 + 1

�
dxdydz or

D =
�
(x; y; z) : x2 + y2 � 1; and 0 � z � 2
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Figure 1.10: Principle of calculation of the Jacobian in cylindrical coordinates.

Figure 1.11: Cylindrical coordinates.

I =

Z 2

0

Z 2�

0

Z 1

0
r
�
r2 + 1

�
drd�dz =

Z 2�

0
d�

Z 2

0
dz

�
1

4

�
r2 + 1

�2�1
0

= 4�:

2. Calculation in spherical coordinates: In dimension 3, the spherical coordinates are

given by: 8>>>><>>>>:
x = r sin � cos'

y = r sin � sin'

z = r cos �

The determinant of the Jacobian matrix of ' (r; �; ') �! (x; y; z) is

jJ'j =

����������
sin � cos' r cos � cos' �r sin � sin'

sin � sin' r cos � sin' r sin � cos'

cos � �r sin � 0

����������
= r2 sin �drd�d':
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Figure 1.12: Principle of calculation of the Jacobian in spherical coordinates.

So we have

I =

ZZZ
D

f (x; y; z) dxdydz =

ZZZ
�

g (r; �; z) r2 sin �drd�d':

Exemple 1.3.4 Calculate I =
RRR
D

zdxdydz; or

D =
�
(x; y; z) : x2 + y2 + z2 � R2; and z � 0

	
:

The domain is the upper hemisphere (centered at the origin and of radius R), passing to

spherical coordinates:

I =

Z 2�

0
d'

Z �
2

0
cos � sin �d�

Z R

0
r2dr =

�

3
R3

1.3.3 Applications

1. Volume: The volume of a body is given by V =
RRR
D

dxdydz such that D is the domain

delimited by this body.

Exemple 1.3.5 Calculate the volume of a sphere, V =
RRR

x2+y2+z2<R2
dxdydz, according to

18
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the property of symmetry: V = 8
RRR
D

dxdydz where

D =
�
(x; y; z) 2 R3 : x2 + y2 + z2 � R2; and x � 0; y � 0; z � 0

	
from where V = 8

R �
2
0 d'

R �
2
0 sin �d�

R R
0 r

2dr =
4�

3
R3.

2. Mass, center and moments of inertia: Let � be the density of a solid which occupies

region V , then its mass is given by

M =

ZZZ
V

� (x; y; z) dxdydz:

The center of mass G = (xG; yG; zG) has coordinates.

Community Veri�cation Icon

xG =
1

M

ZZZ
V

x� (x; y; z) dxdydz:

yG =
1

M

ZZZ
V

y� (x; y; z) dxdydz:

zG =
1

M

ZZZ
V

z� (x; y; z) dxdydz:

The moments of inertia with respect to the three axes are:

Ix =

ZZZ
V

�
y2 + z2

�
� (x; y; z) dxdydz:

Iy =

ZZZ
V

�
x2 + z2

�
� (x; y; z) dxdydz:

Iz =

ZZZ
V

�
y2 + x2

�
� (x; y; z) dxdydz:

Exemple 1.3.6 Determine the center of mass of a solid of constant density, bounded by

the parabolic cylinder x = y2 and the planes x = z; z = 0 and x = 1.

The mass is =
1R
�1

"
1R
y2

�
xR
0

�dz

�
dx

#
dy =

4�

5
, due to symmetry of the domain and � with
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Figure 1.13: A solid bounded by the parabolic cylinder x = y2 and the planes x = z; z = 0 and
x = 1.

respect to the OXZ plane, we has

yG =
1

M

ZZZ
V

y�dxdydz =
�

M

1Z
�1

264 1Z
y2

24 xZ
0

xdz

35 dx
375 dy = 5

7
:

zG =
1

M

ZZZ
V

z�dxdydz =
�

M

1Z
�1

264 1Z
y2

24 xZ
0

zdz

35 dx
375 dy = 5

14
:
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