Chapter 1

SINGLE, DOUBLE AND TRIPLE INTEGRALS

 $\int_{\text{complexes.}}^{\text{n this chap}}$ In this chapter I designates a non-trivial interval of $\mathbb R$ and $\mathbb K$ the set of real numbers or

1.1 Simple integrals

1.1.1 Reminders

Définition 1.1.1 (Primitive) Let f and F be functions of I in K , F is a primitive of f on I when F is differentiable on I and $\forall x \in I, \acute{F}(x) = f(x)$.

Proposition 1.1.1 If f admits an antiderivative on I then it admits an infinity of them all equal to a constant.

Proposition 1.1.2 Let f and $g \in \mathcal{F}(I, \mathbb{K})$, F be a primitive of f on I and G be a primitive of g on I.

1) $\forall \alpha, \beta \in \mathbb{K}$, $(\alpha F + \beta G)$ is an antiderivative of $(\alpha f + \beta g)$ on I.

2) $\mathcal{R}e(F)$ (resp. $\mathcal{I}m(F)$) is an antiderivative on I of $\mathcal{R}e(f)$ (resp. $\mathcal{I}m(f)$).

Exemple 1.1.1 (Search for a primitive of f by transforming expressions) 1) f: t \longrightarrow 1 $\frac{1}{t^4-1}$ we decompose into simple elements

2) $f: t \longrightarrow \tan^2 t$ we reveal a usual primitive

- 3) $f: t \longrightarrow \sin^4 t$ we linearize
- 4) $f: t \longrightarrow t \cos(\omega x) e^{\alpha x}$ use $f(x) = \mathcal{R}e(e^{\alpha + i\omega x})$

Exemple 1.1.2 $f: t \longrightarrow \cos^2 t \sin^3 t$ we make $\acute{u}u^n$ appear. This method can replace linearization for products of the type $\cos^p x \sin^q x$ with p or q impairs.

Définition 1.1.2 (Integral) Let $a, b \in \mathbb{R}, a \leq b$ and $f : [a, b] \to \mathbb{R}$ be a continuous function. The integral from a to b of f is the real denoted \int_a^b a $f(t)dt$ which is equal to the algebraic area of the domain delimited by the curve representative of f, the axis (Ox) and the lines $x = a$ and $x = b$, expressed in area unit

- Extension to any two reals a and b: If $b < a$, we set \int_a^b $\int_a^b f(t)dt = -\int_b^a$ b $f(t)dt$.

- Extension to functions with complex values: Let $f \subset \mathcal{F}(I, \mathbb{C})$ is continuous, for all real numbers a and b of I, we set $\int\limits_0^b$ a $f(t)dt = \int\limits_0^b$ $\int_a^b \mathcal{R}e(f)(t)dt + i \int_a^b$ $\int\limits_a {\cal I}m(f)(t)dt.$

Figure 1.1: Integral Definition.

Remarque 1.1.1 The integration variable is silent i.e. \int_a^b a $f(t)dt = \int_0^b$ a $f(x)dx = \int_a^b$ a $f(u)du = ...$

Proposition 1.1.3 (Properties of the integral) Let f and g be continuous on I with values

in K and a, b and c three real numbers of I.
\n
$$
\int_{a}^{a} f(t)dt = 0 \text{ et } \int_{a}^{b} f(t)dt = -\int_{b}^{a} f(t)dt.
$$
\n*Chasles relation:*
$$
\int_{a}^{b} f(t)dt = \int_{a}^{c} f(t)dt + \int_{c}^{b} f(t)dt
$$
\n*Linearity:* $\forall \alpha, \beta \in \mathbb{R}, \int_{a}^{b} [\alpha f(t) + \beta g(t)] dt = \alpha \int_{a}^{b} f(t)dt + \beta \int_{a}^{b} g(t)dt$ \n*Positivity:* $Si \ a \leq b \ et \ f \geq 0 \ sur \ [a, b] \ alors \int_{a}^{b} f(t)dt \geq 0$ \n*Growth of the integral:* if $a \leq b$ and $f \leq g$ on $[a, b]$ then
$$
\int_{a}^{b} f(t)dt \leq \int_{a}^{b} g(t)dt
$$

Triangle inequality: If $a \leq b$ then \int_a^b a $f(t)dt$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \begin$ $\leq \int_{0}^{b}$ $\int\limits_a |f(t)|\,dt$

1.1.2 Link between integrals and primitives of a function

Théoreme 1.1.1 (Fundamental theorem of analysis) Let f be a continuous function on I with values in $\mathbb{K}, F : x \longrightarrow \int_a^x$ $f(t)dt$ is the unique primitive of f on I which cancels out at a.

Consequences:

- Any continuous function on I admits an infinity of primitives on I . Let a be fixed in I , the set of primitives of f on I is { $x \longrightarrow \int_a^x f(t)dt + k$, k describes K}.
- Let G be any primitive of f on I and $a \in I$, we have: $\forall x \in I$, $G(x) = G(a) + \int_a^x$ $f(t)dt$.
- The notation: \int_I $f = \int$ I $f(t)dt$ denotes any primitive of f on I. For example: $\int_{\mathbb{R}} x dx =$ x^2 $\frac{1}{2} + k$, where $k \in \mathbb{R}$. Attention, here the integration variable is no longer silent.

Corollaire 1.1.1 Let f be a continuous function on $I, \forall a, b \in I, \int_a^b$ a $f(t)dt = [F(t)]_a^b = F(b) - F(a)$ where F is any primitive of f on I .

1.1.3 Integration by parts formula

Définition 1.1.3 Let $f: I \to \mathbb{K}$, we say that f is of class C^1 on I when f is differentiable on I with f continues on I. The set of functions of class C^1 on I with values in K is denoted $C^1(I,\mathbb{K}).$

Théoreme 1.1.2 If u and v are two functions of class C^1 on I then $\forall a, b \in I, \int_{a}^{b}$ a $u(t)\acute{v}(t)dt =$ $[u(t)v(t)]_a^b - \int_a^b$ a $\acute{u}(t)v(t)dt$

Exemple 1.1.3 (Classic examples for the calculation of integral) $\int\limits_0^{1}$ θ xe^xdx and $\int e^x$ 1 t^2 ln tdt

Exemple 1.1.4 (Classic examples for calculating primitive) $\int\limits_{0}^{x} \ln t dt \, dt \int x \arctan x dx$. We 1 can directly use the IPP formula when u and v are of class C^1 on I: I: $\forall x \in I$, $\int u(t)\dot{v}(t)dt =$ $u(t)v(t) - \int \acute{u}(t)v(t)dt$ (Be careful to validate the hypotheses of the theorem).

1.1.4 Variable change formula

Théoreme 1.1.3 Let f continue on I and $\varphi : [a, b] \to I$, of class C^1 on $[a, b]$. We have

$$
\int_{a}^{b} f(\varphi(x))\dot{\varphi}(x)dx = \int_{\begin{array}{c} \langle 1 \rangle \\ \langle 2 \rangle \end{array}}^{\varphi(b)} f(t)dt.
$$

1.1.5 Applications

Application to the calculation of integrals

 1^{st} case: We want to use the change of variable in the sense (1): We set $\varphi(x) = t$

Method: \bullet We replace $\varphi(x)$ by t

- We replace $\phi(x)dx$ by dt.
- We modify the limits of the integral.
- Example: \int_{0}^{1} $\boldsymbol{0}$ $\frac{dx}{chx}$ by setting $e^x = t$

 2^{nd} case: We want to use the change of variable in the direction (2): We set $t = \varphi(x)$

Method: \bullet We determine a and b and we verify that φ is of class C^1 on $[a, b]$.

- We replace $\varphi(x)$ by t.
- We replace dt by $\dot{\varphi}(x)dx$.
- We modify the limits of the integral.

• Example: \int_{0}^{1} $\boldsymbol{0}$ $\sqrt{1-t^2}dt$ by setting $t = \sin x$. Be careful to validate the hypotheses of

the theorem.

Application to the calculation of primitives

 $1st$ case: We want to use the change of variable in the direction (1)

Méthode : \bullet On pose le changement de variable choisi: avec de classe C^1 sur un intervalle de \mathbb{R} , \grave{a} valeurs dans I

• We then have: $dt = \phi(x)dx$.

• We obtain: $\int f(\varphi(x))\dot{\varphi}(x)dx = \int f(t)dt = F(t) = F(\varphi(x))$ where F is an

antiderivative of f on I.

Exemple 1.1.5 $\int \frac{dx}{1+x^2}$ $\frac{dx}{1-\sin x}$ on $]0; \pi[$ by setting $\tan(x/2) = t$.

 2^{nd} case: We want to use the change of variable in the sense (2): We must use a bijective change of variable in order to be able to return to the initial variable.

Method: • We set: $t = \varphi(x)$ with φ bijective of J on I, where J interval of and of class C^1 on J.

• On a alors: $dt = \phi(x)dx$

• We obtain: $\int f(t)dt = \int f(\varphi(x))\dot{\varphi}(x)dx = G(x) = G(\varphi^{-1}(t))$ where G is an antiderivative of $(f \circ \varphi)x \varphi$ on J.

Exemple 1.1.6 $\int \sqrt{t^2 - 3} \text{ on } I = \left[- \frac{1}{2} \right]$ $\sqrt{3}$, $\sqrt{3}$, setting $t - 3 \sin x = \varphi(x)$.

To know how to do without help: Primitive of $f: x \mapsto \frac{1}{ax^2 + b}$ $\frac{1}{ax^2 + bx + c}$ on an interval I where $ax^2 + bx + c \neq 0$

 $\frac{1^{sr} \text{ case: } ax^2 + bx + c \text{ has two real roots } x_1 \text{ and } x_2$: We decompose f into simple elements: $\forall x \in \mathbb{R}$ $I,\stackrel{A}{\rule{0pt}{0pt}}$ $\frac{A}{x-x_1} + \frac{B}{x-}$ $\frac{B}{x-x_2}$ with real A and B. We obtain $\forall x \in I$, $\int f(x)dx = A \ln|x-x_1| + B \ln|x-x_1|$.

Exemple 1.1.7 $\int \frac{dx}{x^2 - 1}$ on $]-1, 1[$.

 $\frac{2^{nd} \text{ case: } ax^2 + bx + c \text{ has a double real root } x_0: \ \forall x \in I, f(x) = \frac{A}{(x-a)^2}$ $(x-x_0)$ $\overline{2}$ with real A. We obtain $\forall x \in I, \int f(x)dx = \frac{-A}{(x-a)}$ $(x-x_0)$

Exemple 1.1.8 $\int \frac{dx}{4x^2 + 4x + 1}$ on $]0, +\infty[$

 $\frac{3^{rd} \text{ case:}}{3^{rd} \text{ case:}} ax^2 + bx + c$ has no real roots: $\Delta = b^2 - 4ac < 0$. We write $ax^2 + bx + c$ in canonical form

$$
ax^{2} + bx + c = a\left[\left(x + \frac{b}{2a}\right)^{2} - \frac{\Delta}{4a^{2}}\right] - a\left[\left(x + \frac{b}{2a}\right)^{2} - A^{2}\right]
$$

with A real, $A > 0$. We set $x + \frac{b}{2}$ $\frac{\partial}{\partial a} = t$, change of variable therefore affines C^1 and bijective of \mathbb{R} on \mathbb{R} . We obtain $\forall x \in I$,

$$
\int f(x)dx = \frac{1}{a}\int \frac{dt}{1+t^2} = \frac{1}{aA}\arctan\left(\frac{t}{A}\right) - \frac{1}{aA}\arctan\left(\frac{x+\frac{b}{2a}}{A}\right)
$$

1.2 Double integrals

Multiple integrals constitute the generalization of so-called simple integrals: that is to say the integrals of a function of a single real variable. Here we focus on generalization to functions with a greater number of variables (two or three). Recall that a real function f, defined on an interval $[a, b]$, is said to be Riemann integrable if it can be framed between two staircase functions; hence any continuous function is integrable. The integral of f over $[a, b]$, denoted \int_a^b a $f(t)dt$, is interpreted as the area between the graph of f, the axis (XoX) and the lines of equations $x = a, a = b$. By subdividing [a, b] into n subintervals $[x_{i-1}, x_i]$ of the same length $\Delta x = \frac{b-a}{a}$ $\frac{a}{n}$, we define the integral of f over [a, b] by:

$$
\int_{a}^{b} f(x)dx = \lim_{n \to +\infty} \sum_{i=1}^{n} f(a_i) (x_i - x_{i-1}), \qquad a_i \in [x_{i-1}, x_i]
$$

where $f(a_i)(x_i - x_{i-1})$ represents area of the base rectangle $[x_{i-1}, x_i]$ and height $f(a_i)$:

Figure 1.2: Principle of double integral.

1.2.1 Principle of the double integral on a rectangle

Let f be the real function of the two variables x and y, continuous on a rectangle $D = [a, b] \times [c, d]$ of \mathbb{R}^2 . Its representation is a surface S in the space provided with the reference $(0, \vec{i}, \vec{j}, \vec{k})$. We divide D into sub-rectangles, in each sub-rectangle $[x_{i-1}, x_i] \times [y_{i-1}, y_i]$ we choose a point $M(x, y)$ and we calculate the image of (x, y) for the function f. The sum of the volumes of the columns whose base is sub-rectangles and the height $f(x, y)$ is an approximation of the volume between the plane $Z = 0$ and the surface S. When the grid becomes sufficiently "fine" so that the diagonal of each sub-rectangle tends towards 0, this volume will be the limit of the Riemann sums and we note it:

Figure 1.3: Double integral.

Exemple 1.2.1 Using the definition, calculate \iiint $[0,1] \times [0,1]$ $(x+2y) dx dy.$

Remarque 1.2.1 A priori, the double integral is made to calculate volumes, just as the simple integral was made to calculate an area.

In a double integral, the terminals at x and y must always be arranged in ascending order.

Théoreme 1.2.1 Let D be a bounded domain of \mathbb{R}^2 . Then any continuous function $f: D \longrightarrow \mathbb{R}$ is integrable in the Riemann sense.

1.2.2 Properties of double integrals

1. The double integral over a domain D is linear:

$$
\iint\limits_{D} \left(\alpha f + \mu g \right)(x, y) \, dx dy = \alpha \iint\limits_{D} f \left(x, y \right) dx dy + \mu \iint\limits_{D} g \left(x, y \right) dx dy.
$$

2. If D and \acute{D} are two domains such that $D \cap \acute{D}$ = $\sqrt{2}$ $\Big\}$ \vert $\emptyset,$ or a curve, or isolated points, or \mathbf{A} $\overline{\mathcal{N}}$ \int , then:

$$
\iint\limits_{D\cup\hat{D}} f(x,y) \, dx dy = \iint\limits_{D} f(x,y) \, dx dy + \iint\limits_{\hat{D}} f(x,y) \, dx dy.
$$

- 3. If $f(x, y) \ge 0$ at any point in D, with f not identically zero, then \iint_D $f(x, y) dx dy$ is strictly positive.
- 4. Si $\forall (x, y) \in D, f(x, y) \le g(x, y)$, then $\iint_D f(x, y) dx dy \le \iint_D$ \acute{D} $g(x, y) dx dy$. 5. \int D $f(x, y) dx dy$ $\vert \leq \iint_D$ $\iint\limits_{D}|f(x,y)|\,dxdy.$

1.2.3 Fubini formulas

Théoreme 1.2.2 Let f be a continuous function on a rectangle $D = [a, b] \times [c, d]$ of \mathbb{R} . We have

Théoreme 1.2.3 Let f be a continuous function on a rectangle $D = [a, b] \times [c, d]$ of \mathbb{R} . We have:

$$
\iint\limits_{D} f(x,y) \, dx dy = \int\limits_{c}^{d} \left[\int\limits_{a}^{b} f(x,y) \, dx \right] dy.
$$

So we calculate a double integral over a rectangle by calculating two single integrals:

- \bullet By first integrating with respect to x between a and b (leaving y constant). The result is a function of y.
- \bullet By integrating this expression of y between c and d. Alternatively, we can do the same by integrating first at y and then at x .

Exemple 1.2.2 Calculation of $I = \iint$ $\left[0,\frac{\pi}{2}\right] \times \left[0,\frac{\pi}{2}\right]$ $\sin (x + y) \, dx dy$. According to Fubini, we have:

$$
I = \int_{0}^{\frac{\pi}{2}} \left[\int_{0}^{\frac{\pi}{2}} \sin(x+y) \, dx \right] dy = \int_{0}^{\frac{\pi}{2}} \left[\int_{0}^{\frac{\pi}{2}} \sin(x+y) \, dy \right] dx = \int_{0}^{\frac{\pi}{2}} (\cos y + \sin y) \, dy = [\sin y - \cos y]_{0}^{\frac{\pi}{2}} = 2.
$$

In this example x and y play the same role.

Exemple 1.2.3 Calculation of $I = \iint$ $[0,1] \times [2,5]$ 1 $\frac{1}{(1+x+2y)^2}dxdy$. Let's calculate

$$
I = \int_{2}^{5} \left[\int_{0}^{1} \frac{1}{(1+x+2y)^{2}} dx \right] dy = \int_{2}^{5} \left[\frac{1}{(1+x+2y)} \right]_{0}^{1} dy
$$

= $\frac{1}{2} [\ln (1+2y) - \ln (2+2y)]_{2}^{5} = \frac{1}{2} \ln \frac{11}{10}.$

Special case: If $g : [a, b] \longrightarrow \mathbb{R}$ and $h : [c, d] \longrightarrow \mathbb{R}$ are two continuous functions, then \int $[a,b] \times [c,d]$ $g(x)h(y)dxdy =$ Î \int_a^b a $g(x)dx\bigg)\left(\int\limits_{0}^{d}$ c $h(y)dy\bigg)$.

Exemple 1.2.4 Calculate the integral $I = \iiint$ $\left[0,\frac{\pi}{2}\right] \times \left[0,\frac{\pi}{2}\right]$ $\sin(x)\cos(y)dxdy.$

Théoreme 1.2.4 Let f be a continuous function on a bounded domain D of \mathbb{R}^2 . The double integral $I = \iint$ D $f(x, y) dx dy$ is calculated in one of the following ways:

- If we can represent the domain D in the form $D = \{(x, y) \in \mathbb{R}^2 / f_1(x) \le y \le f_2(x), a \le x \le b\}$ then

$$
\iint\limits_D f(x,y) \, dx \, dy = \int\limits_a^b \left[\int\limits_{f_1(x)}^{f_2(x)} f(x,y) \, dy \right] dx.
$$

- If we can represent the domain D in the form $D = \{(x, y) \in \mathbb{R}^2/g_1(x) \le x \le g_2(x), c \le y \le d\}$, then:

$$
\iint\limits_{D} f(x, y) dx dy = \int\limits_{c}^{d} \left[\int\limits_{g_1(x)}^{g_2(x)} f(x, y) dx \right] dy.
$$

- If both representations are possible, the two results are obviously equal.

Figure 1.4: Theorem ilustration.

Figure 1.5: The domain D.

Exemple 1.2.5 Calculate the integral \iiint D $(x^2 + y^2)$ dxdy with D is the triangle with vertices $(0, 1), (0, -1)$ and $(1, 0)$. For this we will define D analytically by the inequalities:

$$
D = \{(x, y) \in \mathbb{R}^2 / x - 1 \le y \le 1 - x, 0 \le x \le 1\}
$$

$$
\iint\limits_D \left(x^2 + y^2 \right) dx dy = \int\limits_0^1 \left[\int\limits_{x-1}^{1-x} \left(x^2 + y^2 \right) dy \right] dx = \int\limits_0^1 \left[x^2 y + \frac{y^3}{3} \right]_{x-1}^{1-x} dx = \frac{1}{3}
$$

Exemple 1.2.6 Calculate $I = \iint$ D $(x+2y) dx dy$ on the domain D formed by the union of the left part of the unit disk and the triangle of vertices $(0, -1), (0, 1)$ and $(2, 1)$. We have

$$
I = \int_{-1}^{1} \left[\int_{-\sqrt{1-y^2}}^{\sqrt{y+1}} (x+2y) dx \right] dy = \int_{-1}^{1} \left(3y + 3y^2 + 2y\sqrt{1-y^2} \right) dy = 2.
$$

Exemple 1.2.7 Calculate the integral $I = \iint$ D $e^{x^2}dxdy$ where $D = \{(x, y) \in \mathbb{R}^2/0 \le y \le x \le 1\}.$ The domain is the interior of the triangle limited by the x axis, the line $x = 1$ and the line $y = x$. In this case we are obliged to integrate first with respect to y then with respect to x, because the primitive of the function is not expressed using the usual functions. Hence $I = \int_0^1 I(\tau) d\tau$ $\mathbf{0}$ $\left[\begin{array}{c} x \\ y \end{array}\right]$ θ $e^{x^2}dy\Big\} dx=$ $\frac{1}{\sqrt{2}}$ 0 $xe^{x^2}dx = \frac{e-1}{2}$ $\frac{1}{2}$.

Exemple 1.2.8 *Calculate* $I = \int_0^4$ 0 $\lceil \frac{8}{\lceil} \rceil$ $_{2x}$ $\sin(y^2) dy\Big\] dx = \int_0^8$ $\mathbf{0}$ $\left\lceil \frac{y}{2} \right\rceil$ $\mathbf{0}$ $\sin(y^2) dx$ $dy = \frac{1}{4}$ 4 $\frac{8}{1}$ $\mathbf{0}$ $2y\sin(y^2) dy =$ $1 - \cos 64$ $\frac{1}{4}$

:

1.2.4 Change of variable

We will have a result similar to that of the simple integral, where the change of variable $x = \varphi(t)$ required us to replace the "dx" by $\phi(t)$. It is the Jacobian which will play the role of the derivative^{[1](#page-10-0)}.

Théoreme 1.2.5 Let $(u, v) \in \Delta \longrightarrow (x, y) = \varphi(u, v) \in D$ be a bijection of class C^1 from domain Δ to domain D. Let $|J_{\varphi}|$ the absolute value of the determinant of the Jacobian matrix of φ . So, we have:

$$
\iint\limits_{D} f(x, y) dx dy = \iint\limits_{\Delta} f \circ \varphi(u, v) |J_{\varphi}| du dv.
$$

Figure 1.6: Changement de variable pour les intégrales doubles.

Exemple 1.2.9 Calculate \int $\iint\limits_D (x-1)^2 dx dy$ on the domain with

 \mathbb{R}

$$
D = \left\{ (x, y) \in \mathbb{R}^2 / -1 \le x + y \le 1, -2 \le x - y \le 2 \right\}.
$$

By changing the variable $u = x + y$, $v = x - y$. The domain D in (u, v) is therefore the rectangle ${-1 \le u \le 1, -2 \le v \le 2}.$ We also have $x = \frac{u+v}{2}$ $\frac{+v}{2}, y = \frac{u-v}{2}$ $\frac{1}{2}$. The Jacobian of this change of

¹We call the Jacobian matrix $\varphi : \mathbb{R}^n \longrightarrow \mathbb{R}^p$ of the matrix with p rows and n columns:

$$
J_{\varphi} = \begin{pmatrix} \frac{\partial \varphi_1}{\partial x_1} & \frac{\partial \varphi_1}{\partial x_2} & \dots & \frac{\partial \varphi_1}{\partial x_n} \\ \frac{\partial \varphi_2}{\partial x_1} & \frac{\partial \varphi_2}{\partial x_1} & \dots & \frac{\partial \varphi_2}{\partial x_n} \\ \vdots & \vdots & \dots & \vdots \\ \frac{\partial \varphi_p}{\partial x_1} & \frac{\partial \varphi_p}{\partial x_2} & \dots & \frac{\partial \varphi_p}{\partial x_n} \end{pmatrix}
$$

The first column contains the partial derivatives of the coordinates of φ with respect to the first variable x_1 , the second column contains the partial derivatives of the coordinates of φ with respect to the second variable x_2 and so on.

variables is
$$
J = \begin{pmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{pmatrix} = \begin{pmatrix} 1/2 & 1/2 \\ 1/2 & -1/2 \end{pmatrix}
$$
 whose determinant is $\frac{-1}{2}$. And so

$$
I = \frac{1}{8} \int_{-2}^{2} \left[\int_{-1}^{1} (u+v-2)^2 du \right] dv = \frac{136}{3}.
$$

Remarque 1.2.2 - If $|\det(J_\varphi)| = 1$, we obtain \iint_D $f(x, y) dx dy = \iint$ Δ $f\left[\varphi \left(u,v\right) \right] dudv$ - This allows us to use symmetries: if for example $\forall (x, y) \in D, (-x, y) \in D$ et $f(-x, y) =$ $f(x, y)$ then \iint D $f(x, y) dx dy = 2 \int$ \acute{D} $f(x, y) dx dy$, where $\acute{D} = D \cap (\mathbb{R}^+ \times \mathbb{R})$.

Changing variable to polar coordinates

Let
$$
\varphi : \mathbb{R}^2 \longrightarrow \mathbb{R}
$$
 be such that $(r, \theta) \longrightarrow (r \cos \theta, r \sin \theta)$. Then φ is of class C^1 on \mathbb{R}^2 , and its
Jacobian is $J_{\varphi}(r, \theta) = \begin{vmatrix} r \cos \theta & -r \sin \theta \\ \sin \theta & r \cos \theta \end{vmatrix} = r$. Then

$$
I = \iint_D f(x, y) dx dy = \iint_{\Delta} g(r, \theta) r dr d\theta.
$$

Figure 1.7: Changing variable to polar coordinates.

Exemple 1.2.10 1) Calculate by passing in polar coordinates $I = \iint$ D $\frac{1}{x^2+y^2}$ dxdy where $D =$ $\{(x,y): 1 \le x^2 + y^2 \le 4, x \ge 0, y \ge 0\}$ which represents a quarter of the part between the two circles centered at the origin and with radii 1 and 2 (ring). From where

$$
I = \iint\limits_{D} \frac{1}{x^2 + y^2} dx dy = \int\limits_{0}^{\frac{\pi}{2}} \int\limits_{1}^{2} \frac{r}{r^2} dr d\theta = \frac{\pi}{2} \ln 2.
$$

2) Calculate the volume of a sphere $V = \int$ $x^2+y^2 < R^2$ $\sqrt{R^2 - x^2 - y^2}$ dxdy and since the function is even with respect to the two variables, $V = 8$ $\frac{\pi}{2}$ $\boldsymbol{0}$ R R $\mathbf{0}$ $\sqrt{R^2 - r^2} r dr d\theta = \frac{4}{3}$ $rac{\pi}{3} \pi R^2$.

1.2.5 Applications

1. Calculation of area of a domain D: We have seen that \int D $f(x, y) dx dy$ measures the volume under the representation of f and above D . We also have the possibility of using the double integral to calculate the area itself of domain D . To do this, simply take $f(x, y) = 1$. Thus, the area A of the domain is $A = \iint$ D $dxdy = \iint$ Δ $r dr d\theta$.

Exemple 1.2.11 Calculate the area delimited by the ellipse with equation $\frac{x^2}{2}$ $rac{x^2}{a^2} + \frac{y^2}{b^2}$ $\frac{b^2}{b^2} = 1.$ Let us note the area of this ellipse A, therefore $A = \iint$ $rac{x^2}{a^2} + \frac{y^2}{b^2} < 1$ dxdy. By symmetry and passing $\frac{\pi}{2}$ $\frac{1}{\sqrt{2}}$

to generalized polar coordinates: $x = ar \cos \theta, y = br \sin \theta$, we obtain $A = 4$ θ $\mathbf 0$ $abrdrd\theta =$ πab .

2. Calculation of the area of a surface: We call D the region of the XOY plane delimited by the projection onto the XOY plane of the surface representative of a function f, denoted \sum . The surface area of \sum delimited by its projection D on the plane XOY is given by $A =$ \int D $\sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + }$ $\left(\frac{\partial f}{\partial y}\right)^2 + 1 dx dy$

Exemple 1.2.12 Let's calculate the area of the paraboloid $\sum = \{(x, y, z) : z = x^2 + y^2, 0 \le z \le h\}$. Since the surface \sum is equal to the graph of the function $f(x,y) = x^2 + y^2$ defined above the domain $D = \{(x, y) : x^2 + y^2 \le h\}$. From where:

$$
Aire\left(\sum\right) = \iint\limits_D \sqrt{4x^2 + 4y^2 + 1} dx dy = 2\pi \int_0^{\sqrt{h}} \sqrt{4r^2 + 1} r dr = \frac{\pi}{6} (4h+1)^{3/2}.
$$

3. Mass and centers of inertia: If we note $\rho(x, y)$ s the surface density of a plate Δ , its mass is given by the formula $M =$ \int Δ $\rho(x, y) dx dy$. And its center of inertia $G = (x_G, y_G)$ is such that:

$$
x_G = \frac{1}{M} \iint_{\Delta} x \rho(x, y) dx dy
$$

$$
y_G = \frac{1}{M} \iint_{\Delta} y \rho(x, y) dx dy
$$

Exemple 1.2.13 Determine the center of mass of a thin triangular metal plate whose vertices are at $(0,0),(1,0)$ et $(0,2)$, knowing that its density is $\rho(x,y) = 1 + 3x + y$.

$$
M = \iint_{\Delta} \rho(x, y) dx dy = \int_{0}^{1} \int_{0}^{2-2x} (1 + 3x + y) dx dy = \frac{8}{3}
$$

$$
x_G = \frac{1}{M} \iint_{\Delta} x \rho(x, y) dx dy = \int_{0}^{1} \int_{0}^{2-2x} x (1 + 3x + y) dx dy = \frac{3}{8}
$$

$$
y_G = \frac{1}{M} \iint_{\Delta} y \rho(x, y) dx dy = \int_{0}^{1} \int_{0}^{2-2x} y (1 + 3x + y) dx dy = \frac{11}{16}
$$

4. The moment of inertia: The moment of inertia of a point mass M with respect to an axis is defined by Mr^2 , where r is the distance between the mass and the axis. We extend this notion to a metal plate which occupies a region D and whose density is given by $\rho(x, y)$, the moment of inertia of the plate with respect to the axis $(\hat{X}OX)$ is: $I_x =$ \int D $y^2 \rho(x, y) dx dy$. Similarly, the moment of inertia of the plate with respect to the axis (jOy) is: $I_y =$ \int D $x^2 \rho(x, y) dx dy$. It is also interesting to consider the moment of inertia relative to the origin: $I_O =$ \int D $(x^2+y^2)\rho(x,y)dxdy.$

1.3 Triple integrals

The principle is the same as for double integrals, If $(x, y, z) \longrightarrow f(x, y, z) \in \mathbb{R}$ is a continuous function of three variables on a domain D of \mathbb{R}^3 , we define \iiint D $f(x, y, z) dx dy dz$ as sum limit of the form:

$$
\sum_{i,j,k} f(u_i, v_j, w_k) (x_i - x_{i-1}) (y_j - y_{j-1}) (z_k - z_{k-1})
$$

Remarque 1.3.1 We have the same algebraic properties of double integrals: linearity, ...

1.3.1 Formules de Fubini

1. **On a parallelepiped:** Fubini's theorem applies quite naturally when $D = [a, b] \times [c, d] \times$ $[e, f]$, we come down to calculating three simple integrals:

$$
\iiint\limits_{D} f(x, y, z) dx dy dz = \int_{a}^{b} \left[\int_{c}^{d} \left[\int_{e}^{f} f(x, y, z) dz \right] dy \right] dx = \int_{e}^{f} \left[\int_{c}^{d} \left[\int_{a}^{b} f(x, y, z) dx \right] dy \right] dz = \dots
$$

Exemple 1.3.1 Calculate \iiint $[0,1] \times [1,2] \times [1,3]$ $(x+3yz) dx dy dz$.

2. On any bounded domain: o establish the treatment of the search for the integration bounds. For a certain fixed x, varying between x_{\min} and x_{\max} , we cut out a surface D_x in D. We can then represent in the YOZ plane, then the treatment on D_x is done as with double integrals: $I = \int_{x_{\min}}^{x_{\max}} \left[\int_{y_{\min}}^{y_{\max}} \left[f(x, y, z) \, dz \right] dy \right] dx$. Of course, we can swap the roles of x, y and z .

Figure 1.8: Triple integral.

Exemple 1.3.2 Calculate $I = \iiint$ D $(x^2 + yz) dx dy dz$ in the domain

$$
D = \{(x, y, z) : x \ge 0, y \ge 0, z \ge 0, x + y + 2h \le 1\}
$$

$$
I = \iiint\limits_{D} \left(x^2 + yz \right) dx dy dz = \int_0^{1/2} \left[\int_0^{1-2z} \left[\int_0^{1-2z-x} \left(x^2 + yz \right) dy \right] dz \right] dz = \frac{1}{96}.
$$

1.3.2 Changing variables

If we have a bijective map φ and class C^1 from domain Δ to domain D, defined by: $(u, v, w) \longrightarrow$ $\varphi(u, v, w) = (x, y, z)$. The formula for changing variables is: \iiint D $f(x, y, z) dx dy dz = \iiint$ $\int\limits_{\Delta} \int f\circ$ $\varphi(u, v, w)|J_{\varphi}(u, v, w)|$ dudvdw. By noting $|J_{\varphi}|$ the absolute value of the determinant of the Jacobian.

Figure 1.9: Changing variables for triple integrales.

1. Calculation in cylindrical coordinates: In dimension 3, the cylindrical coordinates are given by: 7

$$
\begin{cases}\n x = r \cos \theta \\
y = r \sin \theta \\
z = z\n\end{cases}
$$

The determinant of the Jacobian matrix of $\varphi(r, \theta, z) \longrightarrow (x, y, z)$ is:

$$
|J_{\varphi}| = \begin{vmatrix} r\cos\theta & -r\sin\theta & 0\\ \sin\theta & r\cos\theta & 0\\ 0 & 0 & 1 \end{vmatrix} = r dr d\theta dz
$$

So we have

$$
I = \iiint\limits_{D} f(x, y, z) dx dy dz = \iiint\limits_{\Delta} g(r, \theta, z) r dr d\theta dz = \int_{\theta_{\min}}^{\theta_{\max}} \left[\int_{r_{\min}}^{r_{\max}} \left[\int_{z_{\min}}^{z_{\max}} g(r, \theta, z) r dz \right] dr \right] d\theta.
$$

Exemple 1.3.3 Calculate $I = \iiint$ V $(x^2+y^2+1) dx dy dz$ or

$$
D = \left\{ (x, y, z) : x^2 + y^2 \le 1, \text{ and } 0 \le z \le 2 \right\}
$$

Figure 1.10: Principle of calculation of the Jacobian in cylindrical coordinates.

Figure 1.11: Cylindrical coordinates.

$$
I = \int_0^2 \int_0^{2\pi} \int_0^1 r(r^2 + 1) dr d\theta dz = \int_0^{2\pi} d\theta \int_0^2 dz \left[\frac{1}{4} (r^2 + 1)^2 \right]_0^1 = 4\pi.
$$

2. Calculation in spherical coordinates: In dimension 3, the spherical coordinates are given by:

$$
\begin{cases}\n x = r \sin \theta \cos \varphi \\
y = r \sin \theta \sin \varphi \\
z = r \cos \theta\n\end{cases}
$$

The determinant of the Jacobian matrix of $\varphi(r, \theta, \varphi) \longrightarrow (x, y, z)$ is

$$
|J_{\varphi}| = \begin{vmatrix} \sin \theta \cos \varphi & r \cos \theta \cos \varphi & -r \sin \theta \sin \varphi \\ \sin \theta \sin \varphi & r \cos \theta \sin \varphi & r \sin \theta \cos \varphi \\ \cos \theta & -r \sin \theta & 0 \end{vmatrix} = r^{2} \sin \theta dr d\theta d\varphi.
$$

Figure 1.12: Principle of calculation of the Jacobian in spherical coordinates.

So we have

$$
I = \iiint\limits_{D} f(x, y, z) dx dy dz = \iiint\limits_{\Delta} g(r, \theta, z) r^{2} \sin \theta dr d\theta d\varphi.
$$

Exemple 1.3.4 Calculate $I = \iiint$ D zdxdydz; or

$$
D = \{(x, y, z) : x^2 + y^2 + z^2 \le R^2, \text{ and } z \ge 0\}.
$$

The domain is the upper hemisphere (centered at the origin and of radius R), passing to spherical coordinates:

$$
I = \int_0^{2\pi} d\varphi \int_0^{\frac{\pi}{2}} \cos\theta \sin\theta d\theta \int_0^R r^2 dr = \frac{\pi}{3} R^3
$$

1.3.3 Applications

1. **Volume:** The volume of a body is given by $V = \iiint$ D $dxdydz$ such that D is the domain delimited by this body.

Exemple 1.3.5 Calculate the volume of a sphere, $V = \iiint$ $x^2+y^2+z^2 < R^2$ dxdydz, according to the property of symmetry: $V = 8 \iiint$ D dxdydz where

$$
D = \left\{ (x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 \le R^2, \text{ and } x \ge 0, y \ge 0, z \ge 0 \right\}
$$

from where $V = 8 \int_0^{\frac{\pi}{2}} d\varphi \int_0^{\frac{\pi}{2}} \sin \theta d\theta \int_0^R r^2 dr = \frac{4\pi}{3}$ $rac{\epsilon}{3}R^3$.

2. Mass, center and moments of inertia: Let μ be the density of a solid which occupies region V , then its mass is given by

$$
M = \iiint\limits_V \mu(x, y, z) \, dxdydz.
$$

The center of mass $G = (x_G, y_G, z_G)$ has coordinates.

Community Verification Icon

$$
x_G = \frac{1}{M} \iiint_{V} x\mu(x, y, z) dx dy dz.
$$

$$
y_G = \frac{1}{M} \iiint_{V} y\mu(x, y, z) dx dy dz.
$$

$$
z_G = \frac{1}{M} \iiint_{V} z\mu(x, y, z) dx dy dz.
$$

The moments of inertia with respect to the three axes are:

$$
I_x = \iiint_V (y^2 + z^2) \mu(x, y, z) dx dy dz.
$$

\n
$$
I_y = \iiint_V (x^2 + z^2) \mu(x, y, z) dx dy dz.
$$

\n
$$
I_z = \iiint_V (y^2 + x^2) \mu(x, y, z) dx dy dz.
$$

Exemple 1.3.6 Determine the center of mass of a solid of constant density, bounded by the parabolic cylinder $x = y^2$ and the planes $x = z, z = 0$ and $x = 1$.

The mass is $=\int_0^1$ -1 $\sqrt{ }$ \int y^2 $\left[\begin{array}{c} x \\ y \end{array}\right]$ 0 $\mu dz \left[dx \right] dy = \frac{4\mu}{5}$ $\frac{f^2}{5}$, due to symmetry of the domain and μ with

Figure 1.13: A solid bounded by the parabolic cylinder $x = y^2$ and the planes $x = z, z = 0$ and $x = 1$.

respect to the OXZ plane, we has

$$
y_G = \frac{1}{M} \iiint_V y \mu dx dy dz = \frac{\mu}{M} \int_{-1}^{1} \left[\int_{y^2}^{1} \left[\int_{0}^{x} x dz \right] dx \right] dy = \frac{5}{7}.
$$

$$
z_G = \frac{1}{M} \iiint_V z \mu dx dy dz = \frac{\mu}{M} \int_{-1}^{1} \left[\int_{y^2}^{1} \left[\int_{0}^{x} z dz \right] dx \right] dy = \frac{5}{14}.
$$