Exercise series N°1

Exercise 1 : Consider the following assertions:

 $A_1: \exists x \in \mathbb{R}, \forall y \in \mathbb{R}: x+y > 0.$

 $A_2: \forall x \in \mathbb{R}, \exists y \in \mathbb{R}: x + y > 0.$

 $A_3: \forall x \in \mathbb{R}, \forall y \in \mathbb{R}: x+y > 0.$

 $A_4: \exists x \in \mathbb{R}, \forall y \in \mathbb{R}: y^2 > x.$

- 1. Are assertions A_1 , A_2 , A_3 and A_4 true or false?
- 2. Give their negation.

Exercise 2:

• If a and b are two positive or zero real numbers, show that:

$$\sqrt{a} + \sqrt{b} \le 2\sqrt{a+b}$$
.

• Prove by induction the following equalities:

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2} \quad and \quad \sum_{k=0}^{n-1} 2^{k} = 2^{n} - 1, \quad with \ n \in \mathbb{N}^{*}$$

• Show that $\sqrt{2}$ is not a rational number.

Exercise 3 Let x and $y \in \mathbb{R}$.

- 1. Show that the following relationships are always true:
 - (a) If |x| < y then -y < x < y
 - (b) |x+y| < |x| + |y|.
 - (c) $||x| |y|| \le |x y|$.
- 2. Solve the following inequalities:
 - (a) |x-2| > 5.
 - (b) |x+2| > |x|.
 - (c) |2x-1| < |x-1|.

Exercise 4 Determine (if they exist): the all upper and lower bounds, supremum, infimum, maximum, and minimum, of the following sets:

$$E_1 = \left\{1, \frac{1}{3}, \frac{1}{5}, \dots, \frac{1}{2n+1}, \dots; \quad n \in \mathbb{N}\right\}, \qquad E_2 =]0, 5], \qquad E_3 = \left\{4 - \frac{1}{n}; n \in \mathbb{N}^*\right\},$$

$$E_4 = \left\{\frac{1}{2} + \frac{n}{2n+1}, \frac{1}{2} - \frac{n}{2n+1}; \quad n \in \mathbb{N}^*\right\}$$

Exercise 5 Show that the following relationships are true.

$$\bullet \ x - 1 < E(x) \le x,$$

•
$$E(x) + E(y) \le E(x+y)$$
,

•
$$E(x) - E(y) \ge E(x - y)$$
,

•
$$E\left(\frac{E(nx)}{n}\right) = E(x),$$

with $x,\ y\in\mathbb{R},\, n\in\mathbb{N}^*$ and E(.) is the integral part function.