University of Biskra

Faculty of Exact Sciences and Natural and Life Sciences

جامعة محمد خيضر بسكرة قسم علوم المادة

Department of Material Sciences First year 2023/ 2024

فيزياء 1: أعمال توجيهية 03 Physics 1: Directed work 03

Exercise 01

A particle M moves according to the trajectory shown in the corresponding figure, which is given in polar coordinates as follows:

$$r = r_0 \exp\left(-\frac{t}{b}\right)$$
 and $\theta = t/b$

Where r_0 and b are positive constants.

- Calculate the velocity of the particle M in polar coordinates?
- Calculate the angle $\alpha = (\vec{v}, \vec{u_{\theta}})$?
- Calculate the acceleration of the particle *M* in polar coordinates?
- 4. Calculate the angle $\beta = (\vec{a}, \vec{u}_N)$

<u>تمرين01</u>

تتحرك جسيمة M وفق المسار الموضح على الشكل المقابل و المعطى بالإحداثيات القطبية كالتالم،:

$$r = r_0 \exp\left(-\frac{t}{b}\right)$$
 و $\theta = t/b$

حيث r_0 و b ثوابتان مُوجبان.

- 1. أحسب شعاع سرعة الجسيمة M في الإحداثيات القطبية?
 - $lpha=(ec{v}\,,\,\,\overrightarrow{u_ heta})$ أحسب الزاوية .2
- 3. أحسب شعاع تسارع الجسيمة M في الإحداثيات القطبية؟
 - $\beta = (\vec{a}, \overrightarrow{u_N})$ أحسب الزاوية .4

Exercise 02

The time equations for a material point M are given by the following Cartesian coordinates:

$$x(t) = R \cos(\omega t)$$

$$y(t) = R \sin(\omega t)$$

$$z(t) = h\omega t$$

Where R, h, and ω are positive constants.

- 1. Rewrite the time equations for the material point M in cylindrical coordinates and deduce the nature of the trajectory?
- 2. Calculate the velocity and acceleration of the material point M in Cartesian and then cylindrical coordinates?
- **3.** Prove that the angle made by the velocity vector with the horizontal plane (Oxy) is constant?
- **4.** Calculate the radius of curvature?

تعطى المعادلات الزمنية لنقطة مادية M بالإحداثيات الديكار تبة التالية:

$$x(t) = R \cos(\omega t)$$

$$y(t) = R \sin(\omega t)$$

$$z(t) = h\omega t$$

حيث R و h و ω ثوابت موجبة.

- M اعد كتابة المعادلات الزمنية للنقطة المادية بالإحداثيات الاسطوانية واستنتج طبيعة المسار؟
 - M أحسب سرعة وتسارع الجسيمة M في الإحداثيات الديكارتية ثم الاسطوانية?
 - 3. بين أن الزاوية التي يصنعها شعاع السرعة مع المستوي الأفقي (Oxy) ثابتة?
 - 4. أحسب نصف قطر الانحناء؟

Exercise 03

In spherical coordinates, a material point M moves on the surface of a sphere of radius R according to the following parametric equations:

$$\begin{cases} \theta = \pi/_{6} = (\overrightarrow{OZ}, \overrightarrow{OM}) \\ \varphi = \omega. t^{2} \end{cases}$$

Where ω is a positive constant.

- 1. Based on the expression of the position vector in spherical coordinates using the unit vectors $(\overrightarrow{u_r}, \overrightarrow{u_\theta}, \overrightarrow{u_\phi})$, find the velocity and acceleration of the point M. Calculate their magnitude, then deduce the normal acceleration?
- 2. Based on the expression of the position vector in Cartesian coordinates using the basis vectors $(\overrightarrow{\iota}, \overrightarrow{J}, \overrightarrow{k})$, find the velocity and acceleration of the point M. Calculate their magnitude again, then compare them with the results of question 1?
- **3.** What is the trajectory of point *M* and what is the nature of its movement?

تمرين03

M في جملة الإحداثيات الكروية, تتحرك نقطة مادية على على سطح كرة نصف قطرها R وفق المعادلات الزمنية التالية:

$$\begin{cases} \theta = \pi/_{6} = (\overrightarrow{OZ}, \overrightarrow{OM}) \\ \varphi = \omega.t^{2} \end{cases}$$

حيث ω ثابت موجب.

- 1. انطلاقا من عبارة شعاع الموضع في الإحداثيات الكروية باستعمال القاعدة $(\overline{u_r},\overline{u_{\phi}},\overline{u_{\phi}})$, أوجد سرعة و تسارع النقطة M أحسب طويلتهما ثم استنتج التسارع الناظمي؟
- 2. انطلاقا من عبارة شعاع الموضع في الإحداثيات الديكارتية باستعمال القاعدة M, M أوجد سرعة و تسارع النقطة M. أحسب طويلتهما من جديد ثم قارنهما مع نتائج السؤال M?
 - M و ما طبیعة حرکتها M و ما طبیعة حرکتها M