University of Biskra
Faculty of Exact Sciences and Natural and Life Sciences
Department of Material Sciences
First year 2023/2024

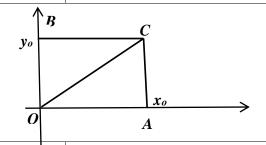
جامعة محمد خيضر بسكرة كلية العلوم الدقيقة وعلوم الطبيعة والحياة قسم علوم المادة السنة الأولى 2024/2023

<u>فيزياء 1: أعمال توجيهية 06</u> Physics 1: Directed work 06

Exercise 01

 \overline{A} force \overrightarrow{F} is given by the following expression:

$$\vec{F} = (y^2 - x^2)\vec{i} + 3xy\vec{j}$$


- 1. Calculate the work of the force \vec{F} to go from point O to point $C(x_0, y_0)$ according to path OAC, path OBC and path OC?
- 2. Is the force \vec{F} derived from a potential?

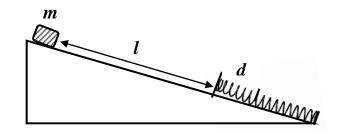
تمرين01

: عطى قوة \overrightarrow{F} بالعبارة التالية

$$\vec{F} = (y^2 - x^2)\vec{i} + 3xy\vec{j}$$

- ر. احسب عمل القوة \overrightarrow{F} للذهاب من النقطة O إلى OAC النقطة $C(x_o\ ,\ y_o)$ حسب المسلك OBC المسلك OBC
 - \overrightarrow{F} مشتقة من كمون؟

Exercise 02


Without initial velocity, a body of mass m leaves the top of a plane inclined at an angle α (without friction) to meet a spring with constant elasticity k and compress it by a distance d.

- 1. Calculate k as function of α , l, d, g?
- 2. To what height does the body rise as a result of the expansion of the spring?

تمرین 02

يترك بدون سرعة ابتدائية جسما كتلته m من أعلى مستوي مائل بزاوية α (بدون احتكاك) ليلتقي بنابض ثابت مرونته α فيضغطه بمسافة α

- α, l, d, g أحسب k بدلالة 1.
- 2. إلى أي ارتفاع يصعد الجسم على اثر تمدد النابض؟

Exercise 03

A body of mass m moves along a road consisting of five parts:

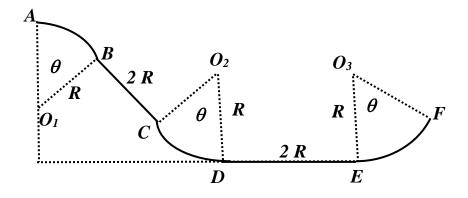
- AB, CD, EF are arcs of circles with radius R, the angle of each arc is θ , and their centers are O_1 , O_2 , O_3 .
- BC, DE are two lines each of length 2R and the coefficient of friction on the lines is f. The body slides without an initial velocity from A. Find:
- 1. The speed of the body at point M of arc AB as function of θ ?
- 2. The reaction as function of θ ? Deduce the angle θ_o at which the body separates from the road?

We now consider $\theta < \theta_o$:

- 1. Calculate the velocity of the body at points **B**, **C**, **D** and **E**?
- 2. Calculate the velocity of the body at point*M* of the arc *EF* and the reaction value?
- 3. What is the value of the coefficient of friction f such that the body's velocity at point F is zero?

تمرین03

یتنقل جسم کتلته m علی طریق یتکون من خمسهٔ أجزاء :


- عبارة عن أقواس دوائر $AB,\ CD\ ,\ EF$ نصف قطرها R زاویة کل قوس heta و مراکزها $O_1,O_2,O_3,$
- 2R مستقيمان طول كل منهما $BC,\ DE$ ومعامل الاحتكاك على المستقيمان f

يترك الجسم ينزلق بدون سرعة ابتدائية من A أوجد:

- بدلالة AB من القوس AB بدلالة M بدلالة θ ؛
- $heta_o$ قيمة رد الفعل بدلالة heta ؟ استنتج الزاوية عندها انفصال الجسم عن الطريق؟

 $: \; heta < heta_o$ نعتبر الآن

- E أحسب سرعة الجسم عند النقاط D, C, B و D?
- M من القوس المين الم
- ر ماهي قيمة معامل الاحتكاك f حتى تنعدم سرعة الجسم عند النقطة f ?

