Département de Mathématiques

Module : Analyse de Fourier et Ondelettes-Master 2.

Interrogation

Exercice 1

Soit $f : \mathbb{R} \to \mathbb{R}$ la fonction 2π -périodique impaire, telle que

$$f(x) = \begin{cases} 1 & \text{si } x \in [0, \pi] \\ 0 & \text{si } x = \pi. \end{cases}$$

- Calculer les coefficients de Fourier trigonométriques de f.
- Etudier la convergence (simple, uniforme) de la série de Fourier de f.
- 3. En déduire les valeurs des sommes

$$\sum_{k=0}^{+\infty} \frac{(-1)^k}{2k+1}, \quad \sum_{k=0}^{+\infty} \frac{1}{(2k+1)^2}.$$

Exercice 2

Soit $f \in L^1(\mathbb{R})$. On rappelle que sa transformée de Fourier est définie par :

$$\forall \omega \in \mathbb{R}$$
, $\hat{f}(\omega) = \int_{-\infty}^{+\infty} f(t) e^{-i\omega t} dt$

- Montrer que la transformée de Fourier de f est continue et bornée.
- \mathcal{L}_{f} (a) On suppose que f est paire. Enoncer une propriété vérifiée par \hat{f} .
 - (b) On suppose que f est à valleurs réelles. Enoncer une propriété vérifiée par \hat{f} .
- 3. Soit $t_0 \in \mathbb{R}$. On pose $g(t) = f(t t_0)$. Exprimer \hat{g} on fonction de \hat{f} .
- \mathcal{H}^{\bullet} (a) Ou suppose que f est de classe C^1 et que f' est intégrable. Exprimer \widehat{f}' en fonction de \widehat{f} .
 - (b) On suppose que $g:t \to tf(t)$ est intégrable. Exprimer \hat{g} en fonction de \hat{f} .