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This chapter is considered one of the most important sections that form the foundation of
linear algebra theories. It serves as a fundamental part for subsequent concepts like linear

applications, matrices, determinants, and is also a continuation of the previous lesson on sets.

Algebraic structures & waudl il 1.1

Internal composition dus|ddf ddeadl 1.1.1

1.1.1 : Definition - «iJ yad

J?#®4¢géspxaEJE

Let E be a set such that E # () .
E b owyd 38 hy EXE Jo 5,2 &5 JF Gl s Gules of 1515 —ad 5 ogple oms

We call an internal composition law or internal composition every application defined on

EXE and taking its values in E.
3}:\3_«1:9 ...J_cAc*ZJ%AL_)ég\Q—OJ}apg

We usually symbolize it with the symbols: x, A, L ..., so we write, for example:
EXE —- FE
T
(z,y) = x*y

LGl o 8885 1) B b Gl s  Gulas ogfg

The operation  is Internal composition to E if the following is true:

Vm,yGE:x*yGE‘
E (5 6p8hue x Sals |1 Gulesd) o) Jois o &

that is, we say that the internal composition % is stable in E

1.1.1 : Example - Jki
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—

9+8=17¢ E o3 .E o &ulsls bules o + aing B = {0,1,6,9,8} & goseal) ol
Let the set E = {0,1,6,9,8} from which + is not an internal composition in E. Because
9+8=17¢ FE

2.1.1 : Example - Jiis

(+) is an internal composition in R. R (o Gals-ts dales (+)

@, b € R yoliall puemt dewddly a3i Hlgla) 3] zlisd R G Adsls adee oo (+) O OLAY

.Rgéit'aei O}S:'a—i-bp.g.c}o:g.n

et Comd dalae LGt e ¥ Ae gase OF Sl OF () gLt (6 5T 5 ylea

Mac ¥l g AALUI Mac¥l (w S Jodd Lild (A it Mie Wl prex Ao game Jiad R O Las

13 Lae ol (i yai hds dde die gliio Addsd) slac¥) e (dd) pes ABLLS 4

OF ey AL g Al sliae M drwlal dow oo oot ola Adbly i of ddbly cols

R 2 sty Zolee Shad oo (+)

To prove that (+) is an internal composition in R, we need to show that for all a,b € R, their
sum a + b is also in R.

In other words, we need to demonstrate that the set of real numbers is closed under addition.

Since R represents the set of all real numbers, it includes both rational and irrational numbers.

Addition of two real numbers results in another real number, regardless of whether they are

rational or irrational. This property is a fundamental characteristic of real numbers, and it

follows that (+) is indeed an internal composition in R.

Group d el  2.1.1

O A9 b Lgh oSt 3 ponell ) (B Aegelly Aewlw¥! B pndl Ad) Gu] B e 31 pCial
Ao g Olslindll g J gaomdl g SLalIles 16 ;¥ 83 poall A pondl o) Oladiul g pgd Joi
320 O DLl 0is y Gl g clindll LB a8l godl Zelaiioe dolall oo atual B o 3 4 ylad
£33 (e das )1 O 938 BLASILl B Jladll by g9a I] Adlis) O ) ol ele B dagedl bl
Ol ot &y, 0ad vt jolal 1 guald Lide caiay jolodl Sl gl (B9 Aan 3 y0 ) 9 B3kl

e 31 Ao 18y Sacluwe O 9o
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Groups are considered one of the fundamental and important algebraic structures in abstract
algebra. They are essential for understanding and grasping other abstract algebraic structures,
such as rings, fields, and vector spaces. Group theory is used in classifying sets of regularly
arranged points in space, making it crucial in the field of crystallography. Additionally, it plays
a significant role in exploring the relationship between the molecular structure of matter and
a specific group. Nowadays, it is challenging to envision any advancement in the theoretical

structure of molecules without the assistance of group theory.

2.1.1 : Definition - «aJ yad

62, g ) b 13 * Salsly Sl b3gje B gase G Lad bpej IS (G,+) o Jebs
X))
We say that (G, %) forms a group, where G is a set equipped with an internal operation x, if

the following four conditions are satisfied:
(%) Internal law S ople (x) (1

Ve,y e G, x*yeQqG.

(x) Associated law SR8 ople (x) (2

Vo,y,2 € G, (zxy)*xz=x*(y*2).

259 Lol pois iy oplo « (3

(x) A law that accepts a single neutral element
Jdee G, VereG,xxe=x and exxr=uzx,
x Sulesl) Sawidly pk5 G oo pois JU (4
FEach element of G has an opposite with respect to the law (%)

VeeG, 3I'ecCG: zxx'=2'xzx=e

7 b o jopg v —glae owy 7

a' is called the opposite of x and is represented by x~'.

Jihane Abdelli 10 University of Mohamed Kheidar, Biskra
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If we add the condition b pil) Lo | 1)
Ve,y e G, x*xy=yx*uz,

we say that (G, ) forms a commutative group Gl ad 60 Js (G, %) o Jons

3.1.1 : Example - Jti

—

The set (R, +) forms a commutative group Gl op0j IS (R, +) &0 gaseal)

To prove that the set (R, +) forms a commutative group, we need to show that it satisfies the
four group axioms: closure, associativity, identity element, and inverse element.

Additionally, for commutativity, we need to demonstrate that the operation (4) is commutative.
Let’s go through each axiom:

Closure: For any two real numbers a and b, their sum a + b is also a real number, so closure
is satisfied.

Associativity: For all real numbers a, b, and ¢, the addition operation is associative, meaning
(a+b)+c=a+ (b+ c). This property holds in R.

Identity Element: There exists an identity element, denoted as 0, such that for any real
number a, a + 0 = 0 + a = a. In this case, the identity element is 0.

Inverse Element: For each real number a, there exists an inverse element, denoted as —a,
such that a + (—a) = (—a) + a = 0. This property holds because every real number has an
additive inverse in R.

Commutativity: The operation of addition is commutative in R, meaning that for any real
numbers ¢ and b, a +b = b + a.

Since all five properties are satisfied, the set (R, +) forms a commutative group.

( &
4.1.1 : Example - JL?.D

—af ) Gula®s 639 joll Sl o \aphill S gasn Z(E) g E # ) 6 gasead! ol
Let the set E # () and ZL(F) be the set of bijective applications with the composition

operation

EXE - FE
(fi9) = fog

Unwversity of Mohamed Kheidar, Biskra 11 Jihane Abdelli
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Gl o) 60 I3 (E,0) &6 gassal
The set (E,o) forms a non-commutative group

Let (G, *) be a group. By (Gx) S

3.1.1 : Definition - wid yad

Let H C G be a subgroup of G if: Zo\;\ngméﬁ}}éijCGoTﬂ
ec H ecH o
For every x,y € H then x xy € H. xxy € H ylo x,yEHdﬁ&g\m °
For every x € H then v~ ' € H. .x’leHoyxEde&Q\M °

The ring ddad! 3.1.1

OF o (oS ts Gudidee 9 jioliall (4o 4e gome (4o Il @ge § e JShd oo Aalsd)
O (2 maie §Y Guldeal) A OF s Lo (i gomall B G pdlwie (leall oin O 4S5
dolos juaie GSLa O 4S5 O i (Eald ) ALOYL Ac gamall G2 juaic Lyl oo 4e gamall

e gamall B yaie JSI LuSe yaie g Oldeall wsd
A rings is an important algebraic structure composed of a set of elements and two internal
operations. These operations must be closed within the set, meaning that the result of ap-
plying these operations to any two elements in the set must also be an element within the
set. Additionally, there should exist a neutral element for one of the operations and an inverse

element for each element in the set.

4.1.1 : Definition - «aJ yad

fol Lo wiss 1) Gl JUaS 151 A g+ oatal$ V) oula®l b3gjalt (4, A %) of Jgbs
We say that (A, A, %) with the two internal law = and A forms a ring if the following is true:

(A, %) is a commutative group G opej (A, %) (1

Jihane Abdelli 12 University of Mohamed Kheidar, Biskra
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A is associative Guess A (2

Ve,y,z € A (zAy)Az = zA(yAz).

x is distributive on A A Je ojg x (3

Ve,y,z € Az (yAz) = (x xy)Ax % 2).

If the condition is met b i) gass 1s)
dee A: Vre A zxAe=elAx =z,

Soas-lg Gals (A, A %) &alsd) of Jeis
we say that the ring (A, A, %) is a unit ring.
If the condition is met b pil) §ass 1s)

Ve,ye A: xAy=yAx,

by as Gl (4, A, 5) 6 of i

we say that the ring (A, A, %) is a commutative ring.

5.1.1 : Example - Jti

sty dabas bals JIGs (R, +,X) 68 gaseal)

The set (R, +,X) forms a unit commutative ring.

To prove that the set (R, 4, X) forms a unit commutative ring, we need to show that it satisfies

all the properties of a unit commutative ring:

1) Closure under addition: For all real numbers a and b, a + b is a real number, which

satisfies closure under addition.

2) Closure under multiplication: For all real numbers a and b, a - b is a real number, which

satisfies closure under multiplication.

3) Associativity of addition and multiplication: Addition and multiplication of real numbers

are both associative operations, so this property holds.

Unwversity of Mohamed Kheidar, Biskra 13 Jihane Abdelli



Algebraic structures & pSdV o) 1.1 Gue 120 e boal) g G psd) )

4) Commutativity of addition and multiplication: Addition and multiplication of real num-

bers are both commutative operations, so this property holds.

5) Existence of additive identity (unit element): The real number 0 serves as the additive

identity since for all real numbers a, we have a + 0 =0+ a = a.

6) Existence of multiplicative identity (unit element): The real number 1 serves as the

multiplicative identity since for all real numbers a, we have a-1=1-a = a.

7) Existence of additive inverses: For every real number a, there exists an additive inverse

—a such that a + (—a) = (—a) +a = 0.

8) Distributive property: The distributive property holds for multiplication over addition in

the set of real numbers, i.e., for all real numbers a, b, and ¢, a- (b+c¢) =a-b+a-c.

Since all these properties are satisfied by the set (R, +, X), it forms a unit commutative ring.

Field Jasd| g musd! 4.1.1

(0 A gomn (0 095 Jaad) G (pe idal ST ¢ e S 9o Dleoly M) B Jasl
OF coma Oldaall ol .0 ually aendl (dusl 3 Oldeall JBY) o (i jad as uoliall
M ¥l Jodl Jgda o dliely do g pidl (po Ao gazne bl g As gasnell Y313 3 pdlue O 9SS
o2 Ll 1) 93 Cali Gyl JSaleghl o Jliess AanGall slue Wl g oewdd slie ¥ g Acd Gt

polatlg Slusby 31 g 9 52 (e atall
A field in mathematics is a more complex algebraic structure than a ring. It consists of a set
of elements with at least two defined mathematical operations: addition and multiplication.
These operations must be closed within the set and meet a set of conditions. Examples of fields
include real numbers, rational numbers, and complex numbers, among others. These algebraic

structures play a fundamental role in various branches of mathematics and the sciences.

5.1.1 : Definition - «aJ yad

1) A g % ol onlell ssgjel) Jas of s W1 K # ¢ 2as K &egasall o Jgis
:\SL) \Ja Y :
We say that the set K where K # ¢ s a field endowed with the two internal laws x and A if

the following statements is true:

Jihane Abdelli 14 University of Mohamed Kheidar, Biskra
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(K, %, A) is a ring. dals (K, x,A) (1

A Guls- 1) Gulesl) Gl L3I paa) oB {e} zas bpej (Kofoy, A) (2
(K_{e3,A) is a group, where {e} is the neutral element with respect to the internal

operation A
If the condition holds. b pal) gass 1s)

Ve,y e K: zAy = yAxz,

(S8 (K %, A) pusd! ol Jgts

We say that the structure (K, x, A) is a commutative field.

6.1.1 : Example - Jki

b s JS (Q, +, ) 68 gaseall

The set (Q,+, ) forms a commutative field.

To prove that the set (Q,+, ) forms a commutative field, we need to show two things:
(Q, +) is an abelian group (commutative group) under addition. (Q \ 0,-) is an abelian group
(commutative group) under multiplication, where Q\ 0 is the set of nonzero rational numbers.

Let’s prove these two properties:

1) (Q,+) is an abelian group:

Closure: For any two rational numbers a and b in Q, a + b is also a rational number, so

closure under addition holds.

Associativity: Addition is associative for all rational numbers. That is, for any a, b, c €
Q,(a+b)+c=a+ (b+c).

Identity Element: The identity element for addition is 0, as a +0 = 0 + a = a for all
a e Q.

Inverse Element: For every a € Q, the additive inverse (negative) of a is —a, and
a+(—a)=(—a)+a=0.

Commutativity: Addition is commutative, meaning a +b = b+ a for all a,b € Q.

Unwversity of Mohamed Kheidar, Biskra 15 Jihane Abdelli
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Therefore, (Q, +) is an abelian group.

2) (Q\0,-) is an abelian group:

Closure: For any two nonzero rational numbers a and b, a - b is also a nonzero rational

number, so closure under multiplication holds.

Associativity: Multiplication is associative for all nonzero rational numbers. That is,
for any a,b,c € Q\ 0, (a-b)-c=a-(b-c).

Identity Element: The identity element for multiplication is 1, asa-1=1-a = a for

alla e Q\ 0.
Inverse Element: For every nonzero rational number a, the multiplicative inverse (re-
ciprocal) of a is %, and a - % = % ca=1.

Commutativity: Multiplication is commutative, meaning a-b = b-a for all a,b € Q\ 0.
Therefore, (Q\ 0, -) is an Abelian group.

Since both conditions are satisfied, the set (Q, +, -) forms a commutative field.

Vector space oelaidl sbaddl 2.1

£ 3ol Jhow 41 3 claddl ol Olyad Lgdde i oM J guadll @al (o s joudl as yian
PRY I P= e IR PN { u_'\ﬁ}a.ta.d‘ Adast Olacdatll Jio (uudlae (4o outay u.ﬂ.uw Lot u-wl.uY!

g ol Gl g Gle gamall Jaad Jie Guslell J guadll (u g it A0S das
This part is one of the most important chapters upon which linear algebra theories are built.
It represents the fundamental part for what will follow in terms of concepts, such as linear
applications, matrices, determinants, etc. It also serves as a continuation of the lessons from

previous chapters, such as the chapter on sets and algebraic structures...

6.2.1 : Definition - wad yad

tGbler 6390 ol 13 K (Jhodd) Jasd) o o126 cbod W1 B # 0 e gesall o Jgis
We say that the set E # () is a vector space on the commutative field K if it has the
following:

Jihane Abdelli 16 University of Mohamed Kheidar, Biskra
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foas B gss EXE g0 0,23 i) &1 oulsts Sulas o 8y a5 oplo o
The law of an internal structure or internal operation, i.e. the application defined
from EXE towards E where:

EXE — F
(u,v) = u+wv

t2as B gss KXE go w2 &bl &1 ous 15 Sules of (&) —ad 5 ogl6 @
The law of an external structure or external operation, i.e. the defined application
from KXE towards E where:

KXE — FE
(ANu) — A-u
which fulfills the following conditions: Sl g i) gase K1
Vuve E:u+v=v+u. (1
Yu,v,w € E:u+ (v+w) = (u+v)+w. (2
There is a neutral element Oy € E where <8 0p € F 63\)}- PO A-¢ (3

YVue E:u+ 0 =u.

“as U pBs pose by u € E pase J4 (4

Every element u € E accepts an opposite element u' where

u+u =0g.

we denote the opposite element u' by —u. (—u) jo b v/ pol) jop
YVue E:1 -u=u, (5
VaiueKVYue E: X (p-u)= (M) - . (6
Vu,v € EVAEK N (u+v)=X-u+\-v. (7
Vue EVA pueK: (A+p) - u=A-u+p-u. (8

M‘%L@":«aju\mu‘;&

Jihane Abdelli 17 University of Mohamed Kheidar, Biskra
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From now on, and until the end of the chapter:
Every field we encounter is a commutative field.

Oleolu (ot Jaomd jolic g dadi (owd s_,.c\.xﬁd! sbadll jolic o
The elements of the vector space are called rays, and the elements of the field are called

scalars.

U952 O (Seedl il (po 4o g 9 pgdaad) ¢ laddl e JB8Y) o Jolda olad slad Jo @
L

-

Every vector space contains at least the zero ray, and it cannot be empty.
(Baiasd) Mue ¥ Jas o) Gads pelad sbad &i B e Jsa3 K=R ol 13) o
If K =R, we say that E is a real vector space (over the field of real numbers).

(At sae ¥ Jas o) Sl pelad sliad 31 E e J a3 K =C Ol 13) o
If K = C, we say that E is an imaginary ray space (over the field of complex numbers).

g 7.2.1 : Example - J 2

iwg B =R? g K = R @05 1 &1 (R Jasd) o b 20\ o126l - boill R? gl

Let R? be the vector space defined on the field R, that is: we set K :.R and E = R2%. Then
g R 0a pois y g R 0o pois 2o (3,) e P u € £ pois I

Fach element u € E is a pair (z,y) where x is an element of R and y is an element of R,

and we write
R*={(z,y) | z € R,y e R}.

We define on R? the internal law denoted by (+) () S oI R? (Jo 0,25 o
‘oieg R? 9o vy pois (/,1/) g (2,9) ol
Let (z,y) and (2',y') be two elements of R?, then:

(z,9) + (@', y) = (z + 2",y +9).

() ¢35 oWV R o 5,5

We define on R? the external law denoted by ()
:Q&»ng,ﬂ&AgRQMPQ&Q(I,y)@

Jihane Abdelli 18 University of Mohamed Kheidar, Biskra
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Let (x,y) be an element of R? and X\ be an element of R, then:

Pois Jﬁph:d\ poilg .(0,0) pgiall ¢ 121 ¢B 2asd) Guls-1 i) Gulagl) Gumidl b poisd)
—(2,9) jo b byl o jop 16 M (=7, —y) poasd) §D (z,y)
The neutral element for the internal additive operation is the null vector (0,0). The opposite

element of each element (x,y) is the element (—x, —y), which we may also denote by —(x,y).

A

\. J

[ 8.2.1 : Example - J 2

g K =R 2o .1 ga pd) (200 510 n ol R Jasdl Jo —o,=all 1) +boal) R oL
' ' E=R"
Let R™ be the vector space defined on the field R, and let n be a natural number greater than
1. We set K=R and E =R".
:....._‘i.fg R 9o polis x1,79,..., 2y Las (21, 22,...,2,) ¢\RAN 5} D u e E pais J<
FEach element u € E is then the vector (x1,xs, ..., T,) where T1,Ts, ..., x, are elements of R,

and we write:
R™ = {(I’l,l‘g,. ° o wxn) | T; € R,Z = 1,2,}

We define on R™ the internal law (+) () S oWV R (Jo 0,25 o
0y R oo 03 p0iS (21,02} g (1, ) o)

Unwversity of Mohamed Kheidar, Biskra 19 Jihane Abdelli
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Let (xq,...,2,) and (2},...,2)) be two elements of R™, then:

(x1, .. xn) + (2], ..., 2)) = (v + 2}, ...,z + 7).

(+) §>.-I\5J\ ol R” Jo L 0,25 e
We define on R™ the external law (-)
‘oieg R go poss A g R" go poss (X1, ..., Tn) U.L\)

Let (xq,...,x,) be an element of R™ and A be an element of R, then:

A (21,0, x0) = (Axq, .., Axy).

JU pbill possilg (0,0, .., 0) pgaall ¢ 1261 ¢ gasd) Guls) ) Gulasl unilly & sbsd) pois!
(@1, 7)o bl o jop 18 W (—a, .., —a,) pos) o (z4,...,T,) pois

The neutral element for the internal additive process is the null vector (0,0,...,0). The
opposite element of each element (xq,...,x,) is the element (—x1, ..., —x,), which we
may also denote by the symbol —(z1,...,x,).
C o) R Jasdl s €7 ¢ C cbind) +\65) olay Jgial) undtiy
(ln the same way, the space C and C™ can be constructed on the field R or C. D
r

9.2.1 : Example - JL"CD

‘R g5 R 9o &0 R0l Jig sl \FQ\R{‘M ¢ Loa)
The vector space of functions defined from R to R .
Gl WS R o2l sboil) Gyins W39 .f 1 R — R Jlgxll 68 gase F(R,R) o)
Let #(R,R) be the set of functions f : R — R. We provide it with the vector space

structure R as follows:

+) S oplh) F(R,R) Jo 0,25 o
We define on Z (R, R) the internal law (+)

G\)\ag__b,&ef+go¢a9.y(R,R)mo“m9—g9fom
Let f and g be elements of F(R,R). Then f + g is defined as follows:

Ve eR, (f+g)(z)= f(z)+g(w).

()e,w\ww\ F(R,R) Jo oo, o
We define on .7 (R,R) the external law(-)

Jihane Abdelli 20 University of Mohamed Kheidar, Biskra



Gue 124\ e boal) g G pad! ) Vector space &\2&\ ¢ Lol 2.1

:&M@&\;;\&J,ﬁaﬁgl@m,)Oi&)\gy(R,R)m&\gfoTﬂ
Let f be a function of #(R,R) and \ an element of R, then we define the product of a

scalar with function as follows:
VreR, (- f)(z) =X f@).
Or simply write 35 &by JG o
(Af)(z) = Af(z).

t S WS 60,2 Guwgaell GBI ol gesd) Sanidhy 3L posll o, e
We define the neutral element with respect to the addition as the zero function as

follows:
Ve eR, f(x)=0.

Ozer) b W jop o oo
We can denote it as 0.zg ).
(B WS RGS R oo 60,2 g S © F(R,R) oo f &I plsdl poisd! o
The opposite function of the function f in (R, R) is the function g defined from R to
R as follows:

Ve eR, g¢g(x)=—f(z).

(=f) o Pb 2ol ol f bl jo 5
We denote the opposite function of f for addition by (—f).
L J

Product of vector spaces :\.gl.n.ﬁ." Qlsbaddl sldy  1.2.1

7.2.1 : Definition - «aJ yad

Jo o K Jasdl o uel®h wlebod By By .. B, oldy Lhas ¥as K oh
(G WS () 9 (1) ol wxaesd) B = EIXEX - XE,
Let K be a commutative field and let Ey, Es, ..., E, be vector spaces on the field K. We
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define by E = E1XEyX .- - XE, the two internal operations (+) and () as follows:

V)\ € Kav(l'lal‘%--'axn)a(ylay27"'7yn) € E:

1) (x17$2>"'7xn)+(y1>y27--'7yn> = (1131+y1,96’2+y2,---751?n+yn)>
)X (x1, 29, ) = (A2, Aoy A Ty,).

2126 oD cbadl) 13D b &>l paish) ogh o)asdl cbind omy (o \R ol imy (B, +, ) 35258
— TGy +bas JU Suslysdt potisl)
Then (E,+, ) represents a vector space called the product space. The neutral element in this

space is the ray of the neutral elements of each space, and we write:

0g = (0g,,08,,...,08,).

Calculus in vector spaces dwsbadd| Oisbiadll 2 wluwst! 2.2.1

.

1.2.1 : Proposition - dmsad

Wyxd okeg A €K gu e B oy K Jasd) Jo o126 sbas B gl
Let E be a vector space on the field K. Let u € E and A € K. Then, we have:

0-u=0g (1

A0y =0p (2

(1) -u=—u (3

u=0g where \-u=0 < A=0 (4
Au=0p= (A=0g)V (u=0g) (5

w—v jo b u+(—v) 126l jopg g B ous ut (—v) 890l (u,0) 2 895 S Galasd) (6
161 oolesd) L ad aieg

The operation that attaches to (u,v) the image u+ (—v) is called subtraction, and the
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vector u + (—v) is denoted by uw — v. Then, we have the following properties:

Mu—v)=Au— I and (A — p)u = lu — pu.

Partial vector spaces d | dusladdl Olgbaddl 3.2.1

K Gbadd) Ja=t e pelad slind (B, A ) 8N (S

Let the triple (E, A, ) be a vector space on the commutative field K.

@ 8.2.1 : Definition - i-ﬁl)ﬂs\

u\b,ﬁd\@m\gngép\ss-\ﬁx’ixc«\:oymlEu.edeJ\,.\s-”}J\ug—dw
We say that the non-empty part F' of E is a partial vector space of E if the following

conditions are satisfied:

(B, 8) byl 6j0 ) an 655 830 (F,4) (1
(F,A) is a subgroup of the commutative group (E,A).

NVAeK, Ve eF: MNzeF (2
\. J

AL s paidf Jleatiw! LiSes o

Or we can use the following definition:

@ 9.2.1 : Definition - uﬁl,ﬁ\

E o0 6305 p& Suljs 6Sgase F g K Jasdl Jo (o186 cbod B T
Let E be a vector space over the field K and F a non-empty subset of E..
Lh b 885 13) E e (Sjs (SR s W00 W1 F oo Jgis
We say that F is a subspace of E if the following conditions hold:

Og € F OEEF(l

u—f—vEF\i;)Ju,vEFd!\l»;\m (2
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For every u,v € F we have u+v € F

AMueFlhduec FiggreK Y 3ol o (3
For every A € K and every u € F' we have X\ -u € F.

( )

10.2.1 : Example - Jkis

B os Sj (%6 2100 gy ¢ {05} ol F (o= sbas JF ds oo (1

For every vector space E, {0g} is always a vector subspace of E.

D P, [1] n ol ) J5T N 15 M) Gamndsd) o MolRall ity 3q a8 o piS S gaten (2
| | (K Jo (o\R6 oL
The set of polynomials with real coefficients whose degrees are less than or équal ton,
P, [x] is a vector space on K |

n<mzas P, (7] oo S S\ bad ¢ P, [2] 101 N ge n S U1 oo By

and we have ¥n € N* then: &, [x] is a vector subspace of P, [x] where n < m.

\. .

( _—

. e

1.2.1 : Corollary - 4

E oe Glls pé &l js 6 gase F g K Jasd (o o126 sbins B ol
Let E be a vector space on the field K and F' a non-empty subset of E.

LS B il sy o) G B oe Jjr (1R W00 F ogh I
To have F be a partial subspace of E, it is sufficient for the the following conditions hold:

"v’x,yEF,V)\,uEK:)\x—I—,uyEF.‘
\. J

1.2.1 : Remark - ?\Jé?){)
wi o o126 +1as byl B s i o o126 cbod g S (o128 bas IS
Jasd)
Every sub-vector space of a vector space on a commutative field is also a vector space
on the same field.

oSl s o owd go (i (SR bod byl ¢B o b s o o126 sbas S e

FEvery vector space on some commutative field is also a sub-vector space of itself on the
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tsame field. )

Linear combination ddasdl z Ml  4.2.1

g 10.2.1 : Definition - u,uﬂ\
2\11.\"\\3\m%\%&.Em%\ﬁfuncvl,vg,...,vn olidg oo sae n > 1 o JRES
Let n > 1 be an integer, and let vy, vy, ..., v, , n be a vector from E. Each ray of the form:

U= MU+ AUy + -+ A\,

1,02, ., Uy GREY (S e omy (K J28) oe - laobw Ap, Ao, A, 2as)
(where A\, Xo, ..., \, are ladders of t}ze field K) It is called linear mizing of rays
V1, V2, ..., Up-
G\&_\\ i) = MeolRe (amd Mg, Ao, An = Lakid)

kThe scales A1, Aa, ..., A, are called linear mixing coefficients.

J

4 2.2.1 : Remark - %)@

.Ulpwﬁw&uoe\dgﬁgu:)\lvlOduagcnzlo\;\';!

(Tfn =1, then u = \vy, and we say that u is in a linear relationship with vy . )

g 11.2.1 : Example - JL’]’.D

03 (1,1,1) 9 (1,1,0) ;s \Ral (B8 ¢ jo D (3,3,1) ¢ R? cbaal) (o (1
In the space R3, the ray (3,3,1) is a linear combination of the two rays (1,1,0) and
(1,1,1) because:

(3,3,1) = 2(1,1,0) + (1,1, 1).

Mg Yoo = (1,1) ¢l2a) go bhs b v = (2,1) ¢l2a)) R? sbodll o (2
(2.1) = (A )) T &3l u = doy ogy i Sk

In the space R?, the vector u = (2,1) is not linearly related to the vector vy = (1,1)

because there is no real A until u = lambdav, which is equivalent to (2,1) = (A, \).
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—

L Gbler 65520 Mg f3 g fo o1 ofo oy cumasdt Yol ebds B = F(R.R) ol (3
Let E = Z(R,R) be the space of real functions, and let fo, f1, fo and f3 be functions
defined by:

Vz eR fO(x):17 fl(x):xa fQ(x):$27 fg(iﬁ):.ﬂfg.

2 602 [ &IV qieg
then the function f defined by

VzeR f(z)=2°-22°>-Tz—4

\)3 f07f17f27f3 \”9)'“ \$b>' t)‘b \Sm

it is a linear combination of the functions fo, fi1, fo, f3 because
f=1F—=2f—-T7fi —4fo.

ogpoel) o) 2 5(R) —\oghoal) cbod o (4
In the matriz space M 3(R) let the matriz

A:<1 1 3>.

0 -1 4

5151 ) Wibglo U b Mool Jo Ceind o logiined oS 3 jo Tl & A GliS gabins
1Mo hoo

We can express matrix A as a linear combination of matrices that contain zeros in all

their components except one, for example:
1 00 010 0 01 000 0 00
A= - +3 — +4 :
000 000 000 010 0 01

Linear correlation and independence gha&ll JYaiu¥ig bld ¥ 5.2.1

11.2.1 : Definition - wad yad

K Gl Jasd) Jo B o \2id) i) polis go (01,02, 0,} GBI o8 Jois 1 € N* ol
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Bosd it €K halud) oo G518 3 U8 g0 018 13) 6% Gles 5] o1 s Glaume 1951
Let n € N* be a natural number. We say that a family {vy,vs, -+ ,v,} of elements in the
vector space E over the field K is linearly independent or a free family if, for every family of

scalars {\i},<, € K, the following condition holds:
AU + Agvg + - - + A\yv, = 0p
where all its coefficients are zero, i.e.: \Ce\ c('xag)&e D5\ \Re e u$.£—o.>-
M =0k A=0, - N\ =0k

5 S K é;)»]\ Jasd) 09 £ \;9-\9.\”\\3\ ¢boal) j0 N3 Ok 9 Op
Og and Og represent the zero of the vector space E and the zero of the commutative field K,

respectively.

( 12.2.1 : Example - JL’]’.D

626 R? s o120 o) b pisid

Let us consider in real vector space R3 the rays

1 1 2 2
a1 = 1 , g = 2 , a3 = -1 7b: —2
1 3 1 —1

\_u).‘ 9 {&1,@2,(13} Mi\” \Fh} t).s @ b %\2\”\\.“ LGiDQ

Hence, the ray b is a linear mizture of the rays {ai, as,as} and we have:

2 1 1 2
b = -2 |1=111-12||+] -1
—1 1 3 1
= a1 — as + as.
. J

3.2.1 : Remark - 2\1&?){4\

s Gl po 1051 ybs Sliime o o o) (oo 126 baill polis ga GBS Sol oo Jois o

We say of any family of vector space elements, if they are not linearly independent,
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that they are linearly dependent.

S \26 2 bao & o LS Sl Sy G gaseall @

\The empty set is linearly independent in any vector space.

J

2 13.2.1 : Example - J 20 )

The polynomials 398! ._,\,:3.;
P(X)=1-X,P(X)=5+3X —2X? and P(X)=1+3X — X2

109 Z,[X]59a8) ) pif <o b ) o Sl Sles JTiS
form a linearly dependent set in the polynomial space Z,|X] because:
3120 o1 B Mimd (031D 3gasd) ) pid o YolRe Luass 1)

If we examine the coefficients of these polynomials, we can observe that the equation

&gw\ommmc\,mowgg\miﬁ409cbca.:,._)\93;9>.-96'x23\.u\094\29,§§-d>-\m
.\,.iuo {9\.\\\)
has a non-trivial solution, which means there exist constants a, b, and c, not all equal to

zero, that make this equation equal to zero.
3P (X) — P(X) + 2P5(X) = 0.
3928) o psf cbod b b Gk po 398 o pif ol il

LT herefore, the polynomials are linearly dependent in the polynomial space.

J

( 14.2.1 : Example - J 2

Slaie Glasd) 03 of D pil {cos, sin} dlesd! iy Sumas) Jlg) sbod F (R, R) ol
Let Z (R, R) be the space of real functions, and let the statement be {cos,sin}. To prove that

this set is linearly independent: We assume that

Acos+psin =0
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—

That equivalent to o &b
VzeR Acos(z)+ psin(z) = 0.

A =050 o gluoll 03® 2 = 0 I8 oo
For x = 0 these equations give us: A = 0.
Ahs Slatwe {cos,sin} &lesh o) &T =0 s v =T 38§ g
For x = % it gives us = 0. That is, the set {cos,sin} is linearly independent.

;S Sulial) GoNRN Ly s o5 s & pe {cos?, sin? 1} Slasdt ¢ & 51 Gus b oo
On the other hand, the set {cos,sin? 1} is linearly related because we have the following

trigonometric relationship:
Ve € R: cos(x)® +sin(z)? — 1 =0.

o) 2as Gegare p B ) ¢l Jelge L

Here, all the linear combination factors are non-zero because we have:

M=1,d=1M\=—1.
- J

e )

* e

2 2.2.1 : Corollary - 4

K L) Jasd) Jo B o126 sbodll polis o {0105, ,v,} 61518 o8 Jois n € N* T
1% (120 GogaRe WIS ol (A}, € K o bioludl oo S1e = avg 15) hhs S po 95

Let n € N* we say about the family {vy,ve, - ,v,} of vector space elements E on The

commutative field K is linearly dependent if there exists a family of scalers {)‘i}ign € K that

are not all null together, check:

=1

. J
g 15.2.1 : Example - JL’ZD
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From the previous ezample notice that the vectors et o B Y ol JBad) oo
1 1 2 2
a, = 1 |,a2= 2 |,a3 = -1 |.,b= —2
1 3 1 —1
linearly dependent Lbs &S pe

al—a2+a3—b:OR3.

S0 \;\

El/\l = 1,/\2 = —1,)\3 = ]_,/\4 =—1: /\1&1 -+ )\2@2 + /\3@3 -+ )\4[) = ORS.

LNOt all are zero together. \Ro Gwgie QIS Mmb

The base or basis wku¥! ¢f 34sldtl 6.2.1

St O 5S0 beie B peso Aedi g Olacdal Lgt g lasdl ot (2 guwlul p sgan oo Suclall
(W gguu g Logd yisal IS sLadll 108 LB juoliall mgd o Juied SoiSen (oeladdl sladll 5ucld
W ggun OOolaatl Clws g Adaddl OO gt Jie dalitee Gldec sl ya) Loai SoiSen

Bueldl sl alusTwls
A basis is a fundamental concept in linear algebra and holds significant applications and im-
portance. When you have a basis for a vector space, you can represent and understand the
elements in that space more comprehensively and easily. You can also perform various oper-

ations, such as linear transformations and coefficient calculations, with ease using this basis.

12.2.1 : Definition - wad yad

590 alas W1 {v1, -+, 0.} Blasd) oo Jois B (SRl sbodl) oo 6R&1 w1, v, o
By vr,- 0, 626 o B e Wb Jo 3L F o 2126 JF o 1) F o 1%6d - gl
Let vy, - -+ , v, be rays from the vector space E, we say of the set {vy,--- ,v,} that it is a

generating set for the vector space E if every ray of E can be expressed as a linear
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combination of the rays vy, --- ,v,. We write:
Yoe B, d\,... . MeK: v= v+ -+ A\,

S SR cLaal) peany dls e LB ol sxdge {vr, L0, ) Glasdt o Ly JeBs
t oW 13) koog 13} gl
We also say that the set {vy,--- ,v,} generates the space E. This is also associated with the

concept of the span generator if and only if:

E =Vect(vy, - ,v,).

2 16.2.1 : Example - JL’]’.D
Take, for example, the following rays S 3y a6 Y4 Jow o \Is

vlz<é>,v2:<g> and v3:<§> of E=R3.

TR om0 = (1) gl 3¢ GRS Jbalge {un, ) Gas

The set {vy,v2,v3} is generating R3 because each ray v = (g) from R® writes

(£)=={g)+u{d)+=(1)-

Here the factors are D Jolg! LD
Al =T, A =Y, A3 = 2.
. J
r A

17.2.1 : Example - J

Let the following rays be SN &2h \;J:!
v = (i) , Uy = (é) of F = R3.

S sbadl) oY v = (1) eleadl W RO oidge les JIES Y {ur,vn) 6209
Vect(vy,ve)

The rays {vi,vo} do not form a generative set for R3. For example, the vector v = (g) does
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not belong to the vector space Vect(vy, vy).
by | o Ly 0 = Ayvp + Agvy Las A, Ay € R 189 —boud b ol 1316
If it is true, we will find A\, Ay € R where v = A\jv1 + Aava. Who also writes:

(3) =2 (1) +2()

it gives us the following linear equations: Sl Gulasdt Glesd) sy
/\1 —|— /\2 - 0
A 2N =
A1 +3 = 0
which has no solution. A B gnd
. i,
r A

18.2.1 : Example - J

las deg Suinas) o Yo\Rall Vs Gabyasd) < 1 b a0 g0 39asl ot pif bid 22, [X] ol
P,1X] \oal) 630 Slas JLas {1, X, X2+ X7} sqasdl o pid
Let 2,[X] be the real vector space of polynomials of degree < n with real coefficients. Then,

Ghe polynomial set {1, X, X?-.. X"} forms a generating set for the space P,[X]. )

.

2.2.1 : Proposition - dugad

U PICAPXS \Jo;\ DI = {v},vh,- - ,v;} aing .E 3 oMo &les F = {v1, 02, ,0p} JS:S

T alasdl b B8 tje 0l O T g o126 S 5 1) bibg 13) IS
Let F = {v1,vq, - ,0,} be a ge;zerc;tive set of E. Hence &' = {v’l,vé, e ,vé} is also a
generative set of E if and only if every vector of F' is written as a linear mixture in the set
F.

13.2.1 : Definition - «ad yad

) B sbodl) wle) 3 B g B = (01, 0n, ..., v,) dlasd! of Jgis K Jo 0\R6 sbiod B oLy

. o\
Let E be a vector space on K. We say that the set B = (v1,vs,...,v,) of E forms a basis for
the space E if:
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B is a generating set for E. E Jodee et B (1
B is a linear independent set. L Slolwe &des- B (2
J
r

1.2.1 : Theorem - :\g.).hp

—

B 12 sboal) wlel B = (v1,v2, ..., v,) ol
Let B = (v1,vs,...,v,) be a basis of the vector.space E.
<ol s 1B b gosall polis (o (B8 g jof b9 0ol I o v € B glns of
S foas b Ao A €K
Fach vector v € E is written as a single linear combination in the elements of the set B.

That s, there are single scalers Ay, ..., \, € K where:

v = A0 + AUg + -+ ApUp.
L J

4.2.1 : Remark - 7\1&?)&\

B oW o v eloih) o Was) ond (Ary..o, A) (1

(A, ..., An) are called the coordinates of v in the basis B.
The application of form JT.\”\J\ oe bl (2
b K* — E

<)\1;)\2;---7>\n) — /\1’01 —|—)\2’02 =+ .. +)\nvn

B (o \2a) il g8 K o 1%0) sLadll oo Jlis B

Jt s a bijection from the vector space K™ to the vector space E.

Dimension of a vector space ‘,sl.tfi sliad  7.2.1

liaall s Lgie O 6550 L1 Aue ,all (slas¥l i) Oleladd) sue I) yodes Zad¥) sLadll L3 dad
Cludls 3 a3 8 Ley (OLBLaudl (1o 42 5300 AL gams o2 Lags Lo sgin daddl O sSs O (ySan
el jatl g
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The dimension in vector space refers to the number of subspaces (or dimensions) that compose
this space. Dimension can be an important concept in various contexts, including mathematics

and physics.

I (B ¥ 51) a1 (10 Ao garme plasiuly ooladll sLiadll el (S (il 11 Glead! b
Aoy ewla™I A a¥ sue I o Bleadl s o bu.m slaall 10 o2 dadd (7 Jubied 3
Omelad cdlaly (2D) ALEN sladll (Jled) Jaiw Ao o b IS sladll b Aadd G Juield

Arwlal Aadi O cdlay (3D) AN slindll Ledcn (Aol Sl (porwlud
In a mathematical context, a vector space can be represented using a set of basis vectors (or
rays) that allows unique representation of any point in that space. Dimension in this context
indicates the number of fundamental rays required to uniquely represent any point in the space.
For example, a two-dimensional space (2D) requires two basis rays to represent a point, while

a three-dimensional space (3D) requires three basis rays.

Gl Aalinall SLALIY duie 3] pedn oeladd! sliadll o3 dadl dudigll p gle g sl juall 2
o2 &y alaa¥W) A slaal B 3, (Jlied) o Lo (an £ Led &y O (Sa

Alasi WM Lgaad (LU 9 (Aalidne Clalsd) &S
In physics and engineering, dimension in vector space refers to the number of different directions
in which a particular object can move. For example, a ball in three-dimensional space can move

in three different directions, and thus, it has three dimensions.

Ae 5o Ao game B I gLl g pailainll mgd g Sl Lewlud (0950 Loladll sLiadll L3 dad
Acelall g Aol 3 OELet (o
The dimension in vector space is fundamental for analyzing and understanding properties and

behaviors in various mathematical and scientific contexts.

14.2.1 : Definition - w24 yad

).R)ggEcg—\Rnd\;\JQﬂ\u\plao\xﬂ‘wnmaﬂgan\m\Eé\R‘mﬂﬁ Loall u\;‘g\
.,.dbgosm

If the vector space E has a basis B with a finite number of elements n, then the vector space
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E has a finite dimension, and we write:

dim(E) = Card(B) = n.

5.2.1 : Remark - %){D

-dim({0}) = 0 & pg120 12 93 {0} pgaall ¢ il

The zero space {0} has a zero dimension, i.e. dim({0}) = 0. )
2 19.2.1 : Example - J 30 )
The canonical basis for the space R? is: ‘D R? ¢Laoall @93\91\ sl i (1
1 0
o) 0]
Hence the dimension of space R? is 2. 2 o R? cLod\ a2 e Y
The vectors &6 Y (2

(00)

polil sae wis Jo Lgisy ool ST R? I el & g R? sboal) win Loyt Jlis
It also forms the basis of the space R?, and any other basis of the space R? contains

the same number of elements.

POis 1 Leva (e1, 69, ,€,) o ol J< US! n A 93 K" c\Laal) Gele dway (3
In general, the space K™ has n dimensions because each basis (e, e, -+ ,e,) contains

n elements.

n+1 Lo A (1, X, X2 - X" o® 2,[X] cbod) wlnl ¥ (dim 2,[X] = n+1) (4
pois
(dim £, [X] = n + 1) because the basis of the space P,[X] is (1, X, X?,--- , X™) which

Gontazns n+ 1 elements. y
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2 2.2.1 : Theorem - %)Jﬂp
oM 1 cdial) A 93 S\ s bos (o
In a vector space with finite dimension n, we have:
FEach linearly independent set has a mazximum of n elements,
coolul (B pose 7 oo Gogle LhS Glkiue Slos IS
Every linearly independent set consisting of n elements is a basis,
WoY) o pois n ge Gigle B 6490 Slos IS @
Every generative set is composed of at least n elements,
wm‘@&,wnwmgboﬂ%wd; °
FEvery generated set consisting of n elements is a basis.
\. J

( 15.2.1 : Definition - t.ﬁl).\'.a

oNg il SR bidl) 12 6= dlot S o

\We call the range of a set of rays, the dimension of the vector space they generate. )

4 6.2.1 : Remark - 7\1&?){»\

The following observations are easy consequences of the previous theorem:

n g8 Jo o126 n e Gigle 6201 Glas &5, e
The range of a set consisting of n rays, at most is n.
s Slime Gletd) 03® 31 13) bitog 13} 1 (B 2126 1 oo Gigle 6261 Gles Gu5;
The range of a ray system consisting of n rays is n if and only if this system is linearly

independent.

boal) Wole§ JT&S Slesd) 1B w51 13) Lidg 13) 1 (B 126 n ue dige 6261 Slas &, @
oalg ) o\l

The range of a ray system consisting of n rays is n if and only if this system forms the
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Lbasis of the vector space it generates. J

Direct sum bl ¢ gamed! 8.2.1

A Arlaadl 1) 35LAM Glaidl puadly Slusls 21 oB i mllaas 32 >dliell ¢ gemmell
Oebgicn (slind ot Olss 18] Legion 3140 O 90 (aline (e 93 (o (uobind (o pead
§ amadl (ol yual dnluce sLidY Las Logaues SoiSan (e o uebiad (Jlied! Jiew e)

«ilcad)
The direct sum is a term used in mathematics and linear algebra to refer to the operation that
combines two distinct types of spaces without any overlap between them. If you have two finite
spaces (for example, two subspaces), you can merge them together to create a larger space

known as the direct sum.

Al Jla (90 Cu Oludly g Gladdl juodl 2 liae (950 rdbeadl ¢ gammal! alusiw
Al w60 9T Aalie e 99 Ol luce ot
The use of the direct sum is valuable in linear algebra and mathematics when there is a need

to combine different types of spaces or to expand dimensions.

16.2.1 : Definition - «ad yad

Let F and G be two sub-vector spaces of E. L e on3 j pus R gasbod G g F \;L/x.\

o 1R 55008l ggate ans G oo pois v g F oo pois U o> ut v poliRd) gaes S gatee
HIQMQF—FGIAA\:OJPpg G g F ond j5)

The set of all elements uw 4+ v where u is an element of F' and v is an element of G s called

the sum of the vector subspaces F' and G. We denote it with F + G. Then we write:
F+G={u+v|ueF,veG}.

G

F+G
/ F
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.

3.2.1 : Proposition - dugad

oo B oo 01 i o0 R 023106 G g F oy
Let F' and G be two sub-vector spaces of E. Then:

F + G is a sub-vector space of E. Eoe Spr S boo [+ G (1

G g F wbgl wi b Lo i SR bod 51 ¢ F+ G (2

F + G is the minimal sub-vector space that simultaneously contains F and G.

17.2.1 : Definition - wad yad

Bl o jap B b pibia go 3 G g F o} g B oo opij ono 128 035100 G g F o)

. . W FOG=E
Let F' and G be two sub-vector spaces of EI. We say that F' and G are in direct sum in E,
which we denote by F & G = E if:

FﬂG:{OE} L4
F+G=FE o
.E(:,é-QM.A\SLGQL*&)’:’QE@MQ!;L@AGﬁFQ?J}.&JJ_&Q@w&GQFQ\é|5!

If F' and G are in direct sum, we say that F' and G are two complementary sub-vector spaces
in K.

4.2.1 : Proposition - degad

Fun,mﬁﬁowgéb,h:.—dbl?uoim&d;u\g\;!bbgbgEcou}}.a\\l:oGgFug\dgb
G ge poisq
We say that F' and G are complementary in E if and only if each element of E is written in

as a unique way for an element of F' and an element of G.
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( 7.2.1 : Remark - 'Z\.Té?)l.aoN

w=u+v 01 G2 G o poisg F g posisd oxy>g 6958 Ja o 3L F g w ol Jgis (1
\ai.>ai}bv/Gch'eF.:.%}w:u’+v’Jr£J\m\C,S-G\é;\ifgveGgueF.:,d}}
v=v qu=u
We say that w of E is written as a single writing of an element of F' and an element
of G, which means that w = u + v where u € F, v € G, and another writing From the

form w = + v where u' € F, v € G it is inevitable that w = u' and v ="',

il sbaal) Jola B 5jsd) (o il sbadll of Jgis Wl F @G = E Wy ol 1) (2

o) g G épd\
If we have FF & G = E. We say that the sub-vector space F is complementary to the

sub-vector space G and vice versa.

BSafie 5121 s By %6 o tebob b Bk g GleTial! Sus j31 Gus 12 1o Lol sqg (3
The presence of complimentary sup-vector spaces occurs only in finite-dimensional

vector spaces.
e have F® G = E. Then Qp.F@G:E\l}}SU\;‘SE (4

dim(E) = dim(F) + dim(G).

. J

g 20.2.1 : Example - J 20

Let o (1
F={(z,00eR*|z€R} and G={(0,y) eR*|yeR}

Prove that o) ._af\

FoG =R

&p ot e o) F 4G =R oo (2,9) = (£,0) + (0,) o} ag FNG = {(0,0)} tysl
s3a5-9 (1,) = (2,0) + (0, ) G &8I o &gy
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We have F NG = {(0,0)} and since (z,y) = (z,0) + (0,y) then F + G =R%. Or we
can easily see that the following writing (x,y) = (z,0) + (0,y) is unique.

Lol byl 1) 6Ty @ = {(2,7) € R? |z € R} gidsg F as b (2
We take F and G' = {(z,z) € R? |z € R}. We can also prove that:

FoG =R
we prove that ol —al (A
FNG ={0,0)}.

ol (z,y) € & \Ja;\ 9y =0 {9\ (r,y) € F 68 uo oiwg (z,y) € FNG ol i3

(5,) = (0,0) Jilog o = y
If (z,y) € FNG' then, from one side (z,y) € F i.e. y =0 and also (z,y) € G’
then x = y. Therefore (z,y) = (0,0).

we prove that ol o (B
F+G =R~

ol o u=v+w 2a> w € G quEF & L8 .u:(x,y)ERz\';riﬁ
-732993140.&‘5}-5E2:y2Olbw:(fl?27y2)EG/Ug‘\ﬂé?yl:OO}bU:(fBbyl)EF
Let uw = (z,y) € R2. We look for v € F and w € G' where u = v + w. Since

v = (x1,y1) € F then y; = 0 and since w = (x2,y2) € G’ then x5 = yo. So we find

x1 and x5 where

(z,y) = (21,0) + (22, 22).
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Ty =Y QT =T —Y LS Y=2=Ty qT =1 + Ty g\ﬂ\;g.(x,y):(wl%—mg,m) Qieg

PUS)
Then (z,y) = (z1 + x2,x2). Hence x = x1 + x5 and y = xo where x1 = v —y and
x9 =1y. We find

(z,y) = (z —v,0) + (v,9),

G’M,M9FMW%W@R2)JO\$—MHQ&§“U¢\_4§W
Which proves that any element of R? is the sum of an element of F and an

element of G'.

. J
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