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Algebraic structures T§rb��� Ynb�� .1.1 Ty�A`K�� ��ºASf�� ¤ T§rb��� Ynb��

d`u§ Am� ,�� d�m�� ,�A�wfOm�� ,TyW��� �AqybWt�� ��� ,�y¡Af� �� £d`� ¨��yF Am� ¨FAF±�

.�A�wm�m�� ��As�� xCdl� Tlmk�

This chapter is considered one of the most important sections that form the foundation of

linear algebra theories. It serves as a fundamental part for subsequent concepts like linear

applications, matrices, determinants, and is also a continuation of the previous lesson on sets.

Algebraic structures T§rb��� Ynb�� 1.1

Internal composition Tyl��d�� Tylm`�� 1.1.1

1.1.1 : Definition - �§r`�

. E ̸= ∅ �y�� T�wm�� E �kt�

Let E be a set such that E ̸= ∅ .

.E ¨� ¢my� @��§¤ E✕E Yl� �r`� �ybW� �� Tyl�� Tylm� ¤� ¨l�� 	y�r�  w�A� ¨ms�

We call an internal composition law or internal composition every application defined on

E✕E and taking its values in E.

:®�� 	tkn� . . . ⊥ ,∆ , ⋆ :Ew�r�Aþ�  A� ¢� z�r�¤

We usually symbolize it with the symbols: ⋆, ∆, ⊥ . . . , so we write, for example:

⋆ :
E✕E → E

(x, y) → x ⋆ y

:¨l§ A� �q�� �Ð� E ¨� Tyl�� ⋆ Tylm`��  wk�¤

The operation ⋆ is Internal composition to E if the following is true:

∀x, y ∈ E : x ⋆ y ∈ E

.E ¨� rqts� ⋆ Tyl��d�� Tylm`��  � �wq�  � ©�

that is, we say that the internal composition ⋆ is stable in E

1.1.1 : Example - �A��
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Ty�A`K�� ��ºASf�� ¤ T§rb��� Ynb�� Algebraic structures T§rb��� Ynb�� .1.1

9 + 8 = 17 /∈ E  ± .E ¨� Tyl�� Tylm� sy� + ¢n�¤ E = {0, 1, 6, 9, 8} T�wm�m�� �kt�

Let the set E = {0, 1, 6, 9, 8} from which + is not an internal composition in E. Because

9 + 8 = 17 /∈ E

2.1.1 : Example - �A��

(+) is an internal composition in R. .R ¨� Tyl�� Tylm� (+)

,a, b ∈ R r}An`�� �ym�� Tbsn�A� ¢�� CAhZ� Y�� �At�� ,R ¨� Tyl�� Tylm� ¨¡ (+)  � �Ab�³

.R ¨� ¾AS§�  wk§ a+ b �h�wm��

.�m��� �� Tql�� Tyqyq���  �d�±� T�wm��  � b��  � Y�� �At�� ,«r�� CAb`�

 �d�±�¤ TqVAn��  �d�±� �� �� �mK� Ah��� ,Tyqyq���  �d�±� �ym� T�wm�� ��m� R  � Am�

�Ð� Am� r\n�� {�� ,r�� ¨qyq�  d� ¢n� �tn§ Tyqyq���  �d�±� �� �yn�� �m� TqVAn�� ry�

 � �ybt§ ¨�At�A�¤ ,Tyqyq���  �d�°� TyFAF� TmF ¨¡ Ty}A��� £@¡ .TqVA� ry� ¤� TqVA� �A�

.R ¨� Tyl�� Tylm� ¾®`� ¨¡ (+)

To prove that (+) is an internal composition in R, we need to show that for all a, b ∈ R, their
sum a+ b is also in R.
In other words, we need to demonstrate that the set of real numbers is closed under addition.

Since R represents the set of all real numbers, it includes both rational and irrational numbers.

Addition of two real numbers results in another real number, regardless of whether they are

rational or irrational. This property is a fundamental characteristic of real numbers, and it

follows that (+) is indeed an internal composition in R.

Group r�z�� 2.1.1

�� T§C¤rR Ah�wk�  r�m�� rb��� ¨� Tmhm��¤ TyFAF±� T§rb��� Ynb�� «d�� r�z�� rbt`�

�d�ts�¤ ��ºASf��¤ �wq���¤ �Aql��A� :«r�±�  r�m�� T§rb��� Ynb�� 
A`ytF�¤ �h� ���

Er�� �� T��sm�� £@¡ rbt`�¤ ºASf�� ¨� ���wm�� Tm\tn� ªAqn�� �m� �ynO� ¨� r�z�� T§r\�

º§z� �y� X�r��  w�A� �AKktF� ¨� �A`f�� A¡C¤ Y�� T�AR� ��Cwlb�� �l� ¨� Tmhm�� �¶Asm��

�A·§z��� T§r\� Tynb� CwW� ©� CwO� Anyl� 	`O§ rRA��� �w�� ¨�¤ .Tny`� r�E¤  Am��

.r�z�� T§r\� d�As�  ¤ 
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Algebraic structures T§rb��� Ynb�� .1.1 Ty�A`K�� ��ºASf�� ¤ T§rb��� Ynb��

Groups are considered one of the fundamental and important algebraic structures in abstract

algebra. They are essential for understanding and grasping other abstract algebraic structures,

such as rings, fields, and vector spaces. Group theory is used in classifying sets of regularly

arranged points in space, making it crucial in the field of crystallography. Additionally, it plays

a significant role in exploring the relationship between the molecular structure of matter and

a specific group. Nowadays, it is challenging to envision any advancement in the theoretical

structure of molecules without the assistance of group theory.

2.1.1 : Definition - �§r`�

T`�C±� ª¤rK�� qq�� �Ð� ⋆ Tyl�� Tylm`�  ¤z� T�wm�� G �y� r�E �kK� (G, ⋆)  � �wq�

:Ty�At��

We say that (G, ⋆) forms a group, where G is a set equipped with an internal operation ⋆, if

the following four conditions are satisfied:

(⋆) Internal law ¨l��  w�A� (⋆) (1

∀x, y ∈ G, x ⋆ y ∈ G.

(⋆) Associated law ¨`ym��  w�A� (⋆) (2

∀x, y, z ∈ G, (x ⋆ y) ⋆ z = x ⋆ (y ⋆ z).

dy�¤ © Ay� rOn� �bq§  w�A� ⋆ (3

(⋆) A law that accepts a single neutral element

∃!e ∈ G, ∀x ∈ G, x ⋆ e = x and e ⋆ x = x,

⋆ Tylm`l� Tbsn�A� ry\� G �� rOn� �k� (4

Each element of G has an opposite with respect to the law (⋆)

∀x ∈ G, ∃x′ ∈ G : x ⋆ x′ = x′ ⋆ x = e.

.x−1 z�r�A� ¢� z�r§¤ x 
wlqm� Yms§ x′

x′ is called the opposite of x and is represented by x−1.
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Ty�A`K�� ��ºASf�� ¤ T§rb��� Ynb�� Algebraic structures T§rb��� Ynb�� .1.1

If we add the condition ªrK�� AnfR� �Ð�

∀x, y ∈ G, x ⋆ y = y ⋆ x,

we say that (G, ⋆) forms a commutative group Tyl§db� r�E �kK� (G, ⋆)  � �wq�

3.1.1 : Example - �A��

The set (R,+) forms a commutative group Tyl§db� r�E �kK� (R,+) T�wm�m��

To prove that the set (R,+) forms a commutative group, we need to show that it satisfies the

four group axioms: closure, associativity, identity element, and inverse element.

Additionally, for commutativity, we need to demonstrate that the operation (+) is commutative.

Let’s go through each axiom:

Closure: For any two real numbers a and b, their sum a+ b is also a real number, so closure

is satisfied.

Associativity: For all real numbers a, b, and c, the addition operation is associative, meaning

(a+ b) + c = a+ (b+ c). This property holds in R.
Identity Element: There exists an identity element, denoted as 0, such that for any real

number a, a+ 0 = 0 + a = a. In this case, the identity element is 0.

Inverse Element: For each real number a, there exists an inverse element, denoted as −a,

such that a + (−a) = (−a) + a = 0. This property holds because every real number has an

additive inverse in R.
Commutativity: The operation of addition is commutative in R, meaning that for any real

numbers a and b, a+ b = b+ a.

Since all five properties are satisfied, the set (R,+) forms a commutative group.

4.1.1 : Example - �A��

	y�rt�� Tylm`�  ¤zm�� Tyl�Aqt�� �AqybWt�� T�wm�� L (E) ¤ E ̸= ∅ T�wm�m�� �kt�

Let the set E ̸= ∅ and L (E) be the set of bijective applications with the composition

operation

◦ :
E✕E → E

(f, g) → f ◦ g
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Algebraic structures T§rb��� Ynb�� .1.1 Ty�A`K�� ��ºASf�� ¤ T§rb��� Ynb��

Tyl§db� sy� r�E �kK� (E, ◦) T�wm�m��

The set (E, ◦) forms a non-commutative group

Let (G, ⋆) be a group. .r�E (G, ⋆) �kt�

3.1.1 : Definition - �§r`�

Let H ⊂ G be a subgroup of G if: :  A� �Ð� G �� Ty¶z� r�E H ⊂ G �kt�

e ∈ H e ∈ H •

For every x, y ∈ H then x ⋆ y ∈ H. .x ⋆ y ∈ H  �� x, y ∈ H �� ��� �� •

For every x ∈ H then x−1 ∈ H. .x−1 ∈ H  �� x ∈ H �� ��� �� •

The ring Tql��� 3.1.1

 � 	�§ ,�ytyl�� �ytylm�¤ r}An`�� �� T�wm�� �� ���t§ �h� ©rb� �ky¡ ¨¡ Tql���

�� �§rOn� ©± �ytylm`�� T�yt�  � ¨n`§ Am� ,T�wm�m�� ¨� �y�rqts�� �ytylm`�� £@¡  wk�

d§A�� rOn� �An¡  wk�  � 	�§ ,��Ð Y�� T�AR³A� .T�wm�m�� ¨� rOn� AS§� ¨¡ T�wm�m��

.T�wm�m�� ¨� rOn� �k� ¨sk� rOn�¤ �Aylm`�� d�±

A rings is an important algebraic structure composed of a set of elements and two internal

operations. These operations must be closed within the set, meaning that the result of ap-

plying these operations to any two elements in the set must also be an element within the

set. Additionally, there should exist a neutral element for one of the operations and an inverse

element for each element in the set.

4.1.1 : Definition - �§r`�

:¨l§ A� qq�� �Ð� Tql� �kK� Ah�� ∆ ¤ ⋆ �ytyl��d�� �yylm`�A�  ¤zm�� (A,∆, ⋆)  � �wq�

We say that (A,∆, ⋆) with the two internal law ⋆ and ∆ forms a ring if the following is true:

(A, ⋆) is a commutative group Tyl§db� r�E (A, ⋆) (1
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Ty�A`K�� ��ºASf�� ¤ T§rb��� Ynb�� Algebraic structures T§rb��� Ynb�� .1.1

∆ is associative Ty`ym�� ∆ (2

∀x, y, z ∈ A : (x∆y)∆z = x∆(y∆z).

⋆ is distributive on ∆ ∆ Yl� Ty`§Ew� ⋆ (3

∀x, y, z ∈ A : x ⋆ (y∆z) = (x ⋆ y)∆(x ⋆ z).

If the condition is met ªrK�� �q�� �Ð�

∃!e ∈ A : ∀x ∈ A, x∆e = e∆x = x,

.T§d��¤ Tql� (A,∆, ⋆) Tql���  � �wq�

we say that the ring (A,∆, ⋆) is a unit ring.

If the condition is met ªrK�� �q�� �Ð�

∀x, y ∈ A : x∆y = y∆x,

.Tyl§db� Tql� (A,∆, ⋆) Tql���  � �wq�

we say that the ring (A,∆, ⋆) is a commutative ring.

5.1.1 : Example - �A��

.T§d��¤ Tyl§db� Tql� �kK� (R,+,✕) T�wm�m��

The set (R,+,✕) forms a unit commutative ring.

To prove that the set (R,+,✕) forms a unit commutative ring, we need to show that it satisfies

all the properties of a unit commutative ring:

1) Closure under addition: For all real numbers a and b, a + b is a real number, which

satisfies closure under addition.

2) Closure under multiplication: For all real numbers a and b, a · b is a real number, which

satisfies closure under multiplication.

3) Associativity of addition and multiplication: Addition and multiplication of real numbers

are both associative operations, so this property holds.
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Algebraic structures T§rb��� Ynb�� .1.1 Ty�A`K�� ��ºASf�� ¤ T§rb��� Ynb��

4) Commutativity of addition and multiplication: Addition and multiplication of real num-

bers are both commutative operations, so this property holds.

5) Existence of additive identity (unit element): The real number 0 serves as the additive

identity since for all real numbers a, we have a+ 0 = 0 + a = a.

6) Existence of multiplicative identity (unit element): The real number 1 serves as the

multiplicative identity since for all real numbers a, we have a · 1 = 1 · a = a.

7) Existence of additive inverses: For every real number a, there exists an additive inverse

−a such that a+ (−a) = (−a) + a = 0.

8) Distributive property: The distributive property holds for multiplication over addition in

the set of real numbers, i.e., for all real numbers a, b, and c, a · (b+ c) = a · b+ a · c.

Since all these properties are satisfied by the set (R,+,✕), it forms a unit commutative ring.

Field �q���¤� �s��� 4.1.1

�� T�wm�� ��  wkt§ �q��� .Tql��� �� �dyq`� r��� ©rb� �ky¡ w¡ �AyRA§r�� ¨� �q���

 � 	�§ �Aylm`�� £@¡ .
rS��¤ �m��� :TyRA§r�� �Aylm`l� ��±� Yl� �yf§r`� �� r}An`��

 �d�±� �mK� �wq� Yl� Tl���¤ .ª¤rK�� �� T�wm�� ¨bl�¤ T�wm�m�� ��� rqts�  wk�

¨� AyFAF� �C¤ 	`l� T§rb��� ��Ayh�� £@¡ .�A�m� T§dq`��  �d�±�¤ Tybsn��  �d�±�¤ Tyqyq���

.�wl`��¤ �AyRA§r�� �¤r� �� d§d`��

A field in mathematics is a more complex algebraic structure than a ring. It consists of a set

of elements with at least two defined mathematical operations: addition and multiplication.

These operations must be closed within the set and meet a set of conditions. Examples of fields

include real numbers, rational numbers, and complex numbers, among others. These algebraic

structures play a fundamental role in various branches of mathematics and the sciences.

5.1.1 : Definition - �§r`�

�Ð� ∆ ¤ ⋆ �ytyl��d�� �yylm`�A�  ¤zm�� �q� ¤� �s� Ah�� K ̸= ϕ �y� K T�wm�m��  � �wq�

:¨l§ A� qq��

We say that the set K where K ̸= ϕ is a field endowed with the two internal laws ⋆ and ∆ if

the following statements is true:
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Ty�A`K�� ��ºASf�� ¤ T§rb��� Ynb�� Algebraic structures T§rb��� Ynb�� .1.1

(K, ⋆,∆) is a ring. Tql� (K, ⋆,∆) (1

∆ Tyl��d�� Tylm`l� Tbsn�A� © Ay��� rOn`�� w¡ {e} �y� ,r�E (K−{e},∆) (2

(K−{e},∆) is a group, where {e} is the neutral element with respect to the internal

operation ∆

If the condition holds. ªrK�� �q�� �Ð�

∀x, y ∈ K : x∆y = y∆x,

.¨l§db� (K, ⋆,∆) �s���  � �wq�

We say that the structure (K, ⋆,∆) is a commutative field.

6.1.1 : Example - �A��

.¨l§db� �s� �kK� (Q,+, ·) T�wm�m��

The set (Q,+, ·) forms a commutative field.

To prove that the set (Q,+, ·) forms a commutative field, we need to show two things:

(Q,+) is an abelian group (commutative group) under addition. (Q \ 0, ·) is an abelian group

(commutative group) under multiplication, where Q \ 0 is the set of nonzero rational numbers.

Let’s prove these two properties:

1) (Q,+) is an abelian group:

Closure: For any two rational numbers a and b in Q, a+ b is also a rational number, so

closure under addition holds.

Associativity: Addition is associative for all rational numbers. That is, for any a, b, c ∈
Q, (a+ b) + c = a+ (b+ c).

Identity Element: The identity element for addition is 0, as a + 0 = 0 + a = a for all

a ∈ Q.

Inverse Element: For every a ∈ Q, the additive inverse (negative) of a is −a, and

a+ (−a) = (−a) + a = 0.

Commutativity: Addition is commutative, meaning a+ b = b+ a for all a, b ∈ Q.
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Vector space ¨�A`K�� ºASf�� .2.1 Ty�A`K�� ��ºASf�� ¤ T§rb��� Ynb��

Therefore, (Q,+) is an abelian group.

2) (Q \ 0, ·) is an abelian group:

Closure: For any two nonzero rational numbers a and b, a · b is also a nonzero rational

number, so closure under multiplication holds.

Associativity: Multiplication is associative for all nonzero rational numbers. That is,

for any a, b, c ∈ Q \ 0, (a · b) · c = a · (b · c).

Identity Element: The identity element for multiplication is 1, as a · 1 = 1 · a = a for

all a ∈ Q \ 0.

Inverse Element: For every nonzero rational number a, the multiplicative inverse (re-

ciprocal) of a is 1
a
, and a · 1

a
= 1

a
· a = 1.

Commutativity: Multiplication is commutative, meaning a · b = b ·a for all a, b ∈ Q\0.

Therefore, (Q \ 0, ·) is an Abelian group.

Since both conditions are satisfied, the set (Q,+, ·) forms a commutative field.

Vector space ¨�A`K�� ºASf�� 2.1

ºz��� ��m§ ¢�� Ð� ,¨W��� rb��� �A§r\� Ahyl� Ynbu� ¨t�� �wOf�� �¡� �� ºz��� �@¡ rbt`§

¢�� Am� ,��� ...�� d�m�� ,�A�wfOm�� ,TyW��� �AqybWt�� ��� ,�y¡Af� �� £d`� ¨��yF Am� ¨FAF±�

...T§rb��� Ynub��¤ �A�wm�m�� �O� ��� TyRAm�� �wOf�� x¤Cd� Tlmk� d`u§

This part is one of the most important chapters upon which linear algebra theories are built.

It represents the fundamental part for what will follow in terms of concepts, such as linear

applications, matrices, determinants, etc. It also serves as a continuation of the lessons from

previous chapters, such as the chapter on sets and algebraic structures...

6.2.1 : Definition - �§r`�

:¨l§Am�  ¤z� �A� �Ð� K ¨l§dbt�� �q��� Yl� ¨�A`J ºAS� Ah�� E ̸= ∅ T�wm�m��  � �wq�

We say that the set E ̸= ∅ is a vector space on the commutative field K if it has the

following:
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Ty�A`K�� ��ºASf�� ¤ T§rb��� Ynb��Vector space ¨�A`K�� ºASf�� .2.1

:�y� E w�� E✕E �� �r`m�� �ybWt�� ©� Tyl�� Tylm� ¤� ¨l�� 	y�r�  w�A� •
The law of an internal structure or internal operation, i.e. the application defined

from E✕E towards E where:

E✕E → E

(u, v) 7→ u+ v

:�y� E w�� K✕E �� �r`m�� �ybWt�� ©� Ty�CA� Tylm� ¤� ¨�CA� 	y�r�  w�A� •
The law of an external structure or external operation, i.e. the defined application

from K✕E towards E where:

K✕E → E

(λ, u) 7→ λ · u

which fulfills the following conditions: :Ty�At�� ª¤rK�� �q�§ ©@��

∀u, v ∈ E : u+ v = v + u. (1

∀u, v, w ∈ E : u+ (v + w) = (u+ v) + w. (2

There is a neutral element 0E ∈ E where �y� 0E ∈ E © Ay� rOn� d�w§ (3

∀u ∈ E : u+ 0E = u.

�y� u′ ry\� rOn� �bq§ u ∈ E rOn� �� (4

Every element u ∈ E accepts an opposite element u′ where

u+ u′ = 0E.

we denote the opposite element u′ by −u. .(−u) z�r�A� u′ry\nl� z�r�

∀u ∈ E : 1 · u = u, (5

∀λ, µ ∈ K, ∀u ∈ E : λ · (µ · u) = (λµ) · u. (6

∀u, v ∈ E,∀λ ∈ K : λ · (u+ v) = λ · u+ λ · v. (7

∀u ∈ E,∀λ, µ ∈ K : (λ+ µ) · u = λ · u+ µ · u. (8

:�Of�� T§Ah� Yt� ¤ ,d`� A� ¨�
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Vector space ¨�A`K�� ºASf�� .2.1 Ty�A`K�� ��ºASf�� ¤ T§rb��� Ynb��

From now on, and until the end of the chapter:

.¨l§db� �q� w¡ ¢� AO� �q� �� •
Every field we encounter is a commutative field.

.�AymlF Yms� �q��� r}An�¤ T`J� Yms� ¨�A`K�� ºASf�� r}An� •
The elements of the vector space are called rays, and the elements of the field are called

scalars.

 wk§  � �kmm�� ry� �� ¢n�¤ ¤ �¤d`m�� �A`K�� Yl� ��¯� Yl� �mtK§ ¨�A`J ºAS� �� •
.Ay�A�

Every vector space contains at least the zero ray, and it cannot be empty.

.(Tyqyq���  �d�±� �q� Yl�) ¨qyq� ¨�A`J ºAS� ¢�� E �� �wq� ,K = R  A� �Ð� •
If K = R, we say that E is a real vector space (over the field of real numbers).

.(Tyly�t��  �d�±� �q� Yl�) ¨ly�� ¨�A`J ºAS� ¢�� E �� �wq� ,K = C  A� �Ð� •
If K = C, we say that E is an imaginary ray space (over the field of complex numbers).

7.2.1 : Example - �A��

¢n�¤ .E = R2 ¤ K = R �S� : ©� ,R �q��� Yl� �r`m�� ¨�A`K�� ºASf�� R2 �ky�

Let R2 be the vector space defined on the field R, that is: we set K = R and E = R2. Then

	tk�¤ .R �� rOn� y ¤ R �� rOn� x �y� (x, y) �¤z�� w¡ u ∈ E rOn� ��

Each element u ∈ E is a pair (x, y) where x is an element of R and y is an element of R,
and we write

R2 =
{
(x, y) | x ∈ R, y ∈ R

}
.

We define on R2 the internal law denoted by (+) (+) ¨l��d��  w�Aq�� R2 Yl� �r`� •

:¢n�¤ R2 �� �§rOn� (x′, y′) ¤ (x, y) �ky�

Let (x, y) and (x′, y′) be two elements of R2, then:

(x, y) + (x′, y′) = (x+ x′, y + y′).

(·) ¨�CA���  w�Aq�� R2 Yl� �r`� •
We define on R2 the external law denoted by (·)

:¢n�¤ R �� rOn� λ ¤ R2 �� rOn� (x, y) �ky�

Jihane Abdelli 18 University of Mohamed Kheidar, Biskra



Ty�A`K�� ��ºASf�� ¤ T§rb��� Ynb�� Vector space ¨�A`K�� ºASf�� .2.1

Let (x, y) be an element of R2 and λ be an element of R, then:

λ · (x, y) = (λx, λy).

rOn� �k� ry\n�� rOn`��¤ .(0, 0) �¤d`m�� �A`K�� w¡ �m��� Tyl��d�� Tylm`l� Tbsn�A� © Ay��� rOn`��

.−(x, y) z�r�A� AS§� ¢� z�r� d� ©@�� (−x,−y) rOn`�� w¡ (x, y)

The neutral element for the internal additive operation is the null vector (0, 0). The opposite

element of each element (x, y) is the element (−x,−y), which we may also denote by −(x, y).

λ · u

u

v

u+ v

−u

0

8.2.1 : Example - �A��

¤ K = R �S� .1 �� rb�� ¨`ybV  d� n �ky� ,R �q��� Yl� �r`m�� ¨�A`K�� ºASf�� Rn �ky�

.E = Rn

Let Rn be the vector space defined on the field R, and let n be a natural number greater than

1. We set K = R and E = Rn.

:	tk�¤ .R �� r}An� x1, x2, . . . , xn �y� (x1, x2, . . . , xn) �A`K�� �Ð� w¡ u ∈ E rOn� ��

Each element u ∈ E is then the vector (x1, x2, . . . , xn) where x1, x2, . . . , xn are elements of R,
and we write:

Rn =
{
(x1, x2, . . . , xn) | xi ∈ R, i = 1, 2, ...

}
.

We define on Rn the internal law (+) (+) ¨l��d��  w�Aq�� Rn Yl� �r`� •

:¢n�¤ Rn �� �§rOn� (x′
1, . . . , x

′
n) ¤ (x1, . . . , xn) �ky�
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Let (x1, . . . , xn) and (x′
1, . . . , x

′
n) be two elements of Rn, then:

(x1, . . . , xn) + (x′
1, . . . , x

′
n) = (x1 + x′

1, . . . , xn + x′
n).

(·) ¨�CA���  w�Aq�� Rn Yl� �r`� •
We define on Rn the external law (·)

:¢n�¤ R �� rOn� λ ¤ Rn �� rOn� (x1, . . . , xn) �ky�

Let (x1, . . . , xn) be an element of Rn and λ be an element of R, then:

λ · (x1, . . . , xn) = (λx1, . . . , λxn).

�k� ry\n�� rOn`��¤ .(0, 0, . . . , 0) �¤d`m�� �A`K�� w¡ �m��� Tyl��d�� Tylm`l� Tbsn�A� © Ay��� rOn`��

.−(x1, . . . , xn) z�r�A� AS§� ¢� z�r� d� ©@�� (−x1, . . . ,−xn) rOn`�� w¡ (x1, . . . , xn) rOn�

The neutral element for the internal additive process is the null vector (0, 0, . . . , 0). The

opposite element of each element (x1, . . . , xn) is the element (−x1, . . . ,−xn), which we

may also denote by the symbol −(x1, . . . , xn).

.C ¤� R �q��� Yl� Cn ¤ C ºASf�� ºAK�� �km§ ��wnm�� Hfn�

In the same way, the space C and Cn can be constructed on the field R or C.

9.2.1 : Example - �A��

. R w�� R �� T�r`m�� ��¤dl� ¨�A`K�� ºASf��

The vector space of functions defined from R to R .

:¨l§ Am� R ¨�A`K�� ºASf�� Tynb� A¡ ¤z� .f : R −→ R ��¤d�� T�wm�� F (R,R) �kt�

Let F (R,R) be the set of functions f : R −→ R. We provide it with the vector space

structure R as follows:

(+) ¨l��d��  w�Aq�� F (R,R) Yl� �r`� •
We define on F (R,R) the internal law (+)

:¨l§ Am� �r`� f + g ¢n�¤ .F (R,R) �� �§rOn� g ¤ f �kt�

Let f and g be elements of F (R,R). Then f + g is defined as follows:

∀x ∈ R, (f + g)(x) = f(x) + g(x).

(·)¨�CA���  w�Aq�� F (R,R) Yl� �r`� •
We define on F (R,R) the external law(·)
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:¨l§ Am� ¨mls� T�� º�d� �r`� ¢n�¤ R �� rOn� λ ¤ F (R,R) �� T�� f �kt�

Let f be a function of F (R,R) and λ an element of R, then we define the product of a

scalar with function as follows:

∀x ∈ R, (λ · f)(x) = λ · f(x).

Or simply write 	tk� TVAs� �k� ¤�

(λf)(x) = λf(x).

:¨l§ Am� T�r`m�� T�¤d`m�� T��d�� ¢��� �m�l� Tbsn�A� © Ay��� rOn`�� �r`� •
We define the neutral element with respect to the addition as the zero function as

follows:

∀x ∈ R, f(x) = 0.

.0F (R,R) z�r�A� Ah� z�r�  � �km§

We can denote it as 0F (R,R).

:¨l§ Am� R w�� R �� T�r`m�� g T��d�� w¡ F (R,R) �� f T��dl� ry\n�� rOn`�� •
The opposite function of the function f in F (R,R) is the function g defined from R to

R as follows:

∀x ∈ R, g(x) = −f(x).

.(−f)z�r�A� �m�l� Tbsn�A� f ry\n� z�r�

We denote the opposite function of f for addition by (−f).

Product of vector spaces Ty�A`K�� ��ºASf�� º�d� 1.2.1

7.2.1 : Definition - �§r`�

Yl� �r`� .K �q��� Yl� Ty�A`J ��ºAS� E1, E2, . . . , En �ky�¤ Ayl§db� ®q� K �ky�

:¨l§ Am� (·) ¤ (+) �ytyl��d�� �ytylm`�� E = E1✕E2✕ · · ·✕En

Let K be a commutative field and let E1, E2, . . . , En be vector spaces on the field K. We
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define by E = E1✕E2✕ · · ·✕En the two internal operations (+) and (·) as follows:

∀λ ∈ K,∀(x1, x2, . . . , xn), (y1, y2, . . . , yn) ∈ E :

1) (x1, x2, . . . , xn) + (y1, y2, . . . , yn) = (x1 + y1, x2 + y2, . . . , xn + yn),

2) λ · (x1, x2, . . . , xn) = (λ · x1, λ · x2, . . . , λ · xn).

�A`J w¡ ºASf�� �@¡ ¨� © Ay��� rOn`��  wk§ .º�d��� ºAS� Yms§ ¨�A`J ºAS� ��m§ (E,+, ·) @¶dn�

	tk�¤ ºAS� �k� T§ Ay��� r}An`��

Then (E,+, ·) represents a vector space called the product space. The neutral element in this

space is the ray of the neutral elements of each space, and we write:

0E = (0E1 , 0E2 , . . . , 0En) .

Calculus in vector spaces Ty�A`K�� ��ºASf�� ¨� 
As��� 2.2.1

1.2.1 : Proposition - TþyS�

:An§d� ¢n�¤ .λ ∈ K ¤ u ∈ E �ky�¤ .K �q��� Yl� ¨�A`J ºAS� E �ky�

Let E be a vector space on the field K. Let u ∈ E and λ ∈ K. Then, we have:

0 · u = 0E (1

λ · 0E = 0E (2

(−1) · u = −u (3

u = 0E where λ · u = 0E ⇐⇒ λ = 0 (4

λ · u = 0E =⇒ (λ = 0K) ∨ (u = 0E) (5

.u− v z�r�A� u+(−v) �A`Kl� z�r§¤ ,�rW�� Yms� u+(−v) CwO�� (u, v) þ� ��r� ¨t�� Tylm`�� (6

:Ty�At�� Q�w��� An§d� ¢n�¤

The operation that attaches to (u, v) the image u+ (−v) is called subtraction, and the
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vector u+ (−v) is denoted by u− v. Then, we have the following properties:

λ(u− v) = λu− λv and (λ− µ)u = λu− µu.

Partial vector spaces Ty¶z��� Ty�A`K�� ��ºASf�� 3.2.1

.K ¨l§dbt�� �q��� Yl� ¨�A`J ºAS� (E,∆, ⋆) Ty�®��� �kt�

Let the triple (E,∆, ⋆) be a vector space on the commutative field K.

8.2.1 : Definition - �§r`�

: AVrK�� �q�� �Ð� E �� ¨¶z� ¨�A`J ºAS� ¢�� E �� F �A��� ry� ºz��� �� �wq�

We say that the non-empty part F of E is a partial vector space of E if the following

conditions are satisfied:

.(E,∆) Tyl§dbt�� r�z�� �� Ty¶z� r�E (F,∆) (1

(F,∆) is a subgroup of the commutative group (E,∆).

. ∀λ ∈ K, ∀x ∈ F : λ · x ∈ F (2

:¨�At�� �§r`t�� �Am`tF� Annkm§ ¤�

Or we can use the following definition:

9.2.1 : Definition - �§r`�

.E �� Ty�A� ry� Ty¶z� T�wm�� F ¤ K �q��� Yl� ¨�A`J ºAS� E �kt�

Let E be a vector space over the field K and F a non-empty subset of E.

:¨l§ A� �q�� �Ð� E �� ¨¶z� ¨�A`J ºAS� Ah�� F �� �wq�

We say that F is a subspace of E if the following conditions hold:

0E ∈ F 0E ∈ F (1

u+ v ∈ F An§d� u, v ∈ F �� ��� �� (2

University of Mohamed Kheidar, Biskra 23 Jihane Abdelli



Vector space ¨�A`K�� ºASf�� .2.1 Ty�A`K�� ��ºASf�� ¤ T§rb��� Ynb��

For every u, v ∈ F we have u+ v ∈ F

λ · u ∈ F An§d� u ∈ F Äl� ¤ λ ∈ K �� ��� �� (3

For every λ ∈ K and every u ∈ F we have λ · u ∈ F .

10.2.1 : Example - �A��

.E �� ¨¶z� ¨�A`J ºAS� A�¤ w¡ {0E}  �� ,E ¨�A`J ºAS� �� ��� �� (1

For every vector space E, {0E} is always a vector subspace of E.

¨¡ Pn [x] ,n ©¤As� ¤� ��� Ah�A�C ¨t�� Tyqyq��� �®�A`m�� ��Ð  ¤d��� ��ry�� T�wm�� (2

, K Yl� ¨�A`J ºAS�

The set of polynomials with real coefficients whose degrees are less than or equal to n,

Pn [x] is a vector space on K ,

.n < m �y� Pn [x] �� ¨¶z� ¨�A`J ºAS� w¡ Pm [x] : �� N∗ �� n �� ��� �� An§d�¤

and we have ∀n ∈ N∗ then: Pm [x] is a vector subspace of Pn [x] where n < m.

1.2.1 : Corollary - T�yt�

.E �� Ty�A� ry� Ty¶z� T�wm�� F ¤ K �q��� Yl� ¨�A`J ºAS� E �kt�

Let E be a vector space on the field K and F a non-empty subset of E.

:¨�At�� ªrK�� �q�t§  � ¨fk§ E �� ¨¶z� ¨�A`J ºAS� F  wk§ ¨k�

To have F be a partial subspace of E, it is sufficient for the the following conditions hold:

∀x, y ∈ F, ∀λ, µ ∈ K : λx+ µy ∈ F.

1.2.1 : Remark - T\�®�

Hf� Yl� ¨�A`J ºAS� AS§� w¡ ,¨l§db� �q� Yl� ¨�A`J ºAS� �� ¨¶z� ¨�A`J ºAS� �� •
.�q���

Every sub-vector space of a vector space on a commutative field is also a vector space

on the same field.

.�q��� Hf� Yl� ¢sf� �� ¨¶z� ¨�A`J ºAS� AS§� w¡ ,A� ¨l§db� �q� Yl� ¨�A`J ºAS� �� •
Every vector space on some commutative field is also a sub-vector space of itself on the
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same field.

Linear combination TyW��� �zm�� 4.2.1

10.2.1 : Definition - �§r`�

:�kK�� �� �A`J �� .E �� �A`J n , v1, v2, . . . , vn �kt�¤ ,�y�}  d� n ≥ 1  � |rtf�

Let n ≥ 1 be an integer, and let v1, v2, . . . , vn , n be a vector from E. Each ray of the form:

u = λ1v1 + λ2v2 + · · ·+ λnvn

.v1, v2, . . . , vn T`J°� ¨W� �z� Yms§ (K �q��� �� �AymlF λ1, λ2, . . . , λn �y�)

(where λ1, λ2, . . . , λn are ladders of the field K) It is called linear mixing of rays

v1, v2, . . . , vn.

.¨W��� �zm�� �®�A`� Yms� λ1, λ2, . . . , λn �Aymls��

The scales λ1, λ2, . . . , λn are called linear mixing coefficients.

2.2.1 : Remark - T\�®�

.v1 �� TyW� T�®� Yl� u  � �wq� ¤ u = λ1v1 ¢n�¤ ,n = 1  A� �Ð�

If n = 1, then u = λ1v1, and we say that u is in a linear relationship with v1.

11.2.1 : Example - �A��

: ± (1, 1, 1) ¤ (1, 1, 0) �y�A`Kl� ¨W� �z� ¨¡ (3, 3, 1) �A`K�� ,R3 ºASf�� ¨� (1

In the space R3, the ray (3, 3, 1) is a linear combination of the two rays (1, 1, 0) and

(1, 1, 1) because:

(3, 3, 1) = 2(1, 1, 0) + (1, 1, 1).

λ d�w§ ¯ ¢�± v1 = (1, 1) �A`K�� �� AyW� Xb�r� Hy� u = (2, 1) �A`K�� ,R2 ºASf�� ¨� (2

.(2, 1) = (λ, λ) ¸�Ak§ ©@�� u = λv1  wk§ Yt� ¨qyq�

In the space R2, the vector u = (2, 1) is not linearly related to the vector v1 = (1, 1)

because there is no real λ until u = lambdav1 which is equivalent to (2, 1) = (λ, λ).
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:¨l§Am� T�r`� ��¤ f3 ¤ f2 ,f1 ,f0 �ky�¤ ,Tyqyq��� ��¤d�� ºAS� E = F (R,R) �ky� (3

Let E = F (R,R) be the space of real functions, and let f0, f1, f2 and f3 be functions

defined by:

∀x ∈ R f0(x) = 1, f1(x) = x, f2(x) = x2, f3(x) = x3.

þ� T�r`m�� f T��d�� ¢n�¤

then the function f defined by

∀x ∈ R f(x) = x3 − 2x2 − 7x− 4

 ± f0, f1, f2, f3 ��¤dl� ¨W� �z� ¨¡

it is a linear combination of the functions f0, f1, f2, f3 because

f = f3 − 2f2 − 7f1 − 4f0.

T�wfOm�� �kt� M2,3(R) �A�wfOm�� ºAS� ¨� (4

In the matrix space M2,3(R) let the matrix

A =

(
1 1 3

0 −1 4

)
.

d��¤ ¯� Ah�A�wk� �� ¨� CAf}� Yl� ©wt�� �A�wfOm� ¨W� �z� �kJ Yl� A T�At� �yWts�

:®�� Xq�

We can express matrix A as a linear combination of matrices that contain zeros in all

their components except one, for example:

A =

(
1 0 0

0 0 0

)
+

(
0 1 0

0 0 0

)
+ 3

(
0 0 1

0 0 0

)
−

(
0 0 0

0 1 0

)
+ 4

(
0 0 0

0 0 1

)
.

Linear correlation and independence ¨W��� �®qtF³�¤ ªAb�C³� 5.2.1

11.2.1 : Definition - �§r`�

K ¨l§dbt�� �q��� Yl� E ¨�A`K�� ºASf�� r}An� �� {v1, v2, · · · , vn} Tl¶A� �� �wq� n ∈ N∗ �ky�
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:An§d� {λi}i≤n ∈ K �Aymls�� �� Tl¶A� �� ��� ��  A� �Ð� ,r� Tlm� Ah�� ¤� AyW� Tlqts� Ah��

Let n ∈ N∗ be a natural number. We say that a family {v1, v2, · · · , vn} of elements in the

vector space E over the field K is linearly independent or a free family if, for every family of

scalars {λi}i≤n ∈ K, the following condition holds:

λ1v1 + λ2v2 + · · ·+ λnvn = 0E

where all its coefficients are zero, i.e.: :©� ,T�¤d`� Ah�®�A`� �ym�  wk� �y�

λ1 = 0K, λ2 = 0K, · · · λn = 0K.

.	y�rt�� Yl� K ¨l§dbt�� �q��� rf}¤ E ¨�A`K�� ºASf�� rf}  ®�m§ 0K ¤ 0E

0E and 0K represent the zero of the vector space E and the zero of the commutative field K,

respectively.

12.2.1 : Example - �A��

T`J±� R3 ¨qyq��� ¨�A`K�� ºASf�� ¨� rbt`n�

Let us consider in real vector space R3 the rays

a1 =


1

1

1

 , a2 =


1

2

3

 , a3 =


2

−1

1

 , b =


2

−2

−1


:An§d� ¤ {a1, a2, a3} T`J°� ¨W� �z� w¡ b �A`K�� ,¢n�¤

Hence, the ray b is a linear mixture of the rays {a1, a2, a3} and we have:

b =


2

−2

−1

 =


1

1

1

−


1

2

3

+


2

−1

1


= a1 − a2 + a3.

3.2.1 : Remark - T\�®�

.AyW� TWb�r� Ah�� AyW� Tlqts� �k� ��  � ,¨�A`K�� ºASf�� r}An� �� Tl¶A� T§� �� �wq� •
We say of any family of vector space elements, if they are not linearly independent,
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that they are linearly dependent.

.¨�A`J ºAS� ©� ¨� AyW� Tlqts� Ty�A��� T�wm�m�� •
The empty set is linearly independent in any vector space.

13.2.1 : Example - �A��

The polynomials  ¤d��� ��ry��

P1(X) = 1−X,P2(X) = 5 + 3X − 2X2 and P3(X) = 1 + 3X −X2.

: ± Pn[X] ¤d��� ��ry�� ºAS� ¨� TW��rt� TyW� Tlm� �kK�

form a linearly dependent set in the polynomial space Pn[X] because:

T� A`m��  � ^�®ns� ,£@¡  ¤d��� ��ry�� �®�A`� AnO�� �Ð�

If we examine the coefficients of these polynomials, we can observe that the equation

aP1(X) + bP2(X) + cP3(X) = 0.

T� A`m�� £@¡ �`�§ Am� ,�rf} Ah`ym� ©¤As� ¯ ,c ¤ ,b ,a ��w�  w�¤ ¨n`§ Am� �¤d`� ry� �� Ah�

.�rf} ©¤As�

has a non-trivial solution, which means there exist constants a, b, and c, not all equal to

zero, that make this equation equal to zero.

3P1(X)− P2(X) + 2P3(X) = 0.

. ¤d��� ��ry�� ºAS� ¨� A¾AyW� TWb�r�  ¤d��� ��ry��  �� ,��@�

Therefore, the polynomials are linearly dependent in the polynomial space.

14.2.1 : Example - �A��

Tlqts� Tlm��� £@¡  � �¡rbn� .{cos, sin} Tlm��� �kt�¤ ,Tyqyq��� ��¤d�� ºAS� F (R,R) �ky�

 � |rf� :AyW�

Let F (R,R) be the space of real functions, and let the statement be {cos, sin}. To prove that

this set is linearly independent: We assume that

λ cos+µ sin = 0
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That equivalent to  � ¸�Ak§

∀x ∈ R λ cos(x) + µ sin(x) = 0.

.λ = 0 :AnyW`� ��¤Asm�� £@¡ x = 0 ��� ��

For x = 0 these equations give us: λ = 0.

.AyW� Tlqts� {cos, sin} Tlm���  � ©� .µ = 0 AnyW`� x = π
2
��� ��¤

For x = π
2
it gives us µ = 0. That is, the set {cos, sin} is linearly independent.

:Ty�At�� Ty�l�m�� T�®`�� An§d� ¢�± AyW� TWb�r� {cos2, sin2, 1} Tlm��� , «r�� Ty�A� ��

On the other hand, the set {cos2, sin2, 1} is linearly related because we have the following

trigonometric relationship:

∀x ∈ R : cos(x)2 + sin(x)2 − 1 = 0.

:An§d� �y� T�¤d`� ry� Ahl� ¨W��� �zm�� ���w� An¡

Here, all the linear combination factors are non-zero because we have:

λ1 = 1, λ2 = 1, λ3 = −1.

2.2.1 : Corollary - T�yt�

K ¨l§dbt�� �q��� Yl� E ¨�A`K�� ºASf�� r}An� �� {v1, v2, · · · , vn} Tl¶A� �� �wq� n ∈ N∗ �ky�

:�q�� ,A`� T�¤d`� Ahl� sy� {λi}i≤n ∈ K �Aymls�� �� Tl¶A� �d�¤ �Ð� AyW� TWb�r� Ah��

Let n ∈ N∗ we say about the family {v1, v2, · · · , vn} of vector space elements E on The

commutative field K is linearly dependent if there exists a family of scalers {λi}i≤n ∈ K that

are not all null together, check:

n∑
i=1

λivi = 0E.

15.2.1 : Example - �A��
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From the previous example notice that the vectors Tlm���  � ^�¯ ��As�� �A�m�� ��

a1 =


1

1

1

 , a2 =


1

2

3

 , a3 =


2

−1

1

 , b =


2

−2

−1


linearly dependent AyW� TWb�r�

a1 − a2 + a3 − b = 0R3 .

so ©�

∃λ1 = 1, λ2 = −1, λ3 = 1, λ4 = −1 : λ1a1 + λ2a2 + λ3a3 + λ4b = 0R3 .

Not all are zero together. .A`� T�¤d`� Ahl� sy�

The base or basis xAF±� ¤� d�Aq�� 6.2.1

�§d�  wk§ A�dn� .ryb� Tym¡�¤ �AqybW� Ah�¤ ¨W��� rb��� ¨� ¨FAF� �whf� ¨¡ d�Aq��

,T�whF¤ Amh� r��� �kK� ºASf�� �@¡ ¨� r}An`�� �h�¤ �y�m� �nkm§ ,¨�A`K�� ºASfl� d�A�

T�whs� �®�A`m�� 
As�¤ TyW��� �®§w�t�� ��� Tflt�� �Aylm� º�r�� AS§� �nkm§¤

.d�Aq�� £@¡ ��d�tFA�

A basis is a fundamental concept in linear algebra and holds significant applications and im-

portance. When you have a basis for a vector space, you can represent and understand the

elements in that space more comprehensively and easily. You can also perform various oper-

ations, such as linear transformations and coefficient calculations, with ease using this basis.

12.2.1 : Definition - �§r`�

d�w� Tlm� Ah�� {v1, · · · , vn} Tlm��� �� �wq� ,E ¨�A`K�� ºASf�� �� T`J� v1, · · · , vn �kt�

	tk�¤ .v1, · · · , vn T`J±� ¨� ¨W� �z� �kJ Yl� 	tk§ E �� �A`J ��  A� �Ð� E ¨�A`K�� ºASfl�

Let v1, · · · , vn be rays from the vector space E, we say of the set {v1, · · · , vn} that it is a

generating set for the vector space E if every ray of E can be expressed as a linear
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combination of the rays v1, · · · , vn. We write:

∀v ∈ E, ∃λ1, . . . , λp ∈ K : v = λ1v1 + · · ·+ λnvn.

¨¶z��� ¨�A`K�� ºASf�� �whfm� TWb�r� ©� .E ºASfl� d�w� {v1, · · · , vn} Tlm���  � AS§� �wq� ¤

:  A� �Ð� Xq�¤ �Ð� d�wm��

We also say that the set {v1, · · · , vn} generates the space E. This is also associated with the

concept of the span generator if and only if:

E = V ect(v1, · · · , vn).

16.2.1 : Example - �A��

Take, for example, the following rays Ty�At�� T`J±� �A�m�� �ybF Yl� �kt�

v1 =
(

1
0
0

)
, v2 =

(
0
1
0

)
and v3 =

(
0
0
1

)
of E = R3.

	tk§ R3 �� v =
(

x
y
z

)
�A`J ��  ± R3 þ� d�w� {v1, v2, v3} Tlm���

The set {v1, v2, v3} is generating R3 because each ray v =
(

x
y
z

)
from R3 writes(

x
y
z

)
= x

(
1
0
0

)
+ y

(
0
1
0

)
+ z

(
0
0
1

)
.

Here the factors are ¨¡ ���w`�� An¡

λ1 = x, λ2 = y, λ3 = z.

17.2.1 : Example - �A��

Let the following rays be Ty�At�� T`J±� �kt�

v1 =
(

1
1
1

)
, v2 =

(
1
2
3

)
of E = R3.

¨�A`K�� ºASfl� ¨mtn§¯ v =
(

0
1
0

)
�A`K�� ®�� .R3 þ� d�w� Tlm� �kK� ¯ {v1, v2} T`J±�

.V ect(v1, v2)

The rays {v1, v2} do not form a generative set for R3. For example, the vector v =
(

0
1
0

)
does
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not belong to the vector space V ect(v1, v2).

:AS§� 	tk§ ©@��¤ .v = λ1v1 + λ2v2 �y� λ1, λ2 ∈ R d�� �ws� ®`�  A� �Ð��

If it is true, we will find λ1, λ2 ∈ R where v = λ1v1 + λ2v2. Who also writes:(
0
1
0

)
= λ1

(
1
1
1

)
+ λ2

(
1
2
3

)
it gives us the following linear equations: :Ty�At�� TyW��� Tlm��� AnyW`§

λ1 + λ2 = 0

λ1 + 2λ2 = 1

λ1 + 3λ2 = 0

which has no solution. .�� Ah� Hy� ¨t��

18.2.1 : Example - �A��

Tlm� ¢n�¤ .Tyqyq��� �®�A`m�� ��Ð Tyqyq��� ≤ n T�Cd�� ��  ¤d��� ��ry�� ºAS� Pn[X] �ky�

.Pn[X] ºASfl� d�w� Tlm� �kK� {1, X,X2 · · · , Xn}  ¤d��� ��ry��

Let Pn[X] be the real vector space of polynomials of degree ≤ n with real coefficients. Then,

the polynomial set {1, X,X2 · · · , Xn} forms a generating set for the space Pn[X].

2.2.1 : Proposition - TþyS�

d�w� Tlm� AS§� ¨¡ F ′ =
{
v′1, v

′
2, · · · , v′q

}
¢n�¤ .E þ� d�w� Tlm� F = {v1, v2, · · · , vp} �kt�

.F Tlm��� ¨� ¨W� �z� �kJ Yl� F ′ �� �A`J �� 	t� �Ð� Xq�¤ �Ð� E þ�

Let F = {v1, v2, · · · , vp} be a generative set of E. Hence F ′ =
{
v′1, v

′
2, · · · , v′q

}
is also a

generative set of E if and only if every vector of F ′ is written as a linear mixture in the set

F .

13.2.1 : Definition - �§r`�

�Ð� E ºASfl� xAF� �kK� E �� B = (v1, v2, . . . , vn) Tlm���  � �wq� .K Yl� ¨�A`J ºAS� E �ky�

:�A�

Let E be a vector space on K. We say that the set B = (v1, v2, . . . , vn) of E forms a basis for

the space E if:
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B is a generating set for E. .E þ� d�w� Tlm� B (1

B is a linear independent set. .AyW� Tlqts� Tlm� B (2

1.2.1 : Theorem - T§r\�

.E ¨�A`K�� ºASfl� xAF� B = (v1, v2, . . . , vn) �kt�

Let B = (v1, v2, . . . , vn) be a basis of the vector space E.

�AymlF d�w§ ©� .B T�wm�m�� r}An� ¨� ¨W� �zm� dy�¤ T�At� �kJ Yl� 	tk§ v ∈ E �A`J ��

:�y� dy�¤ λ1, . . . , λn ∈ K
Each vector v ∈ E is written as a single linear combination in the elements of the set B.
That is, there are single scalers λ1, . . . , λn ∈ K where:

v = λ1v1 + λ2v2 + · · ·+ λnvn.

4.2.1 : Remark - T\�®�

.B xAF±� ¨� v �A`K�� �Ay��d�� Yms� (λ1, . . . , λn) (1

(λ1, . . . , λn) are called the coordinates of v in the basis B.

The application of form �kK�� �� �ybWt�� (2

ϕ : Kn −→ E

(λ1, λ2, . . . , λn) 7−→ λ1v1 + λ2v2 + · · ·+ λnvn

.E ¨�A`K�� ºASf�� w�� Kn ¨�A`K�� ºASf�� �� ��Aq� w¡

It is a bijection from the vector space Kn to the vector space E.

Dimension of a vector space ¨�A`J ºAS� d`� 7.2.1

.ºASf�� �@¡ Ahn�  wkt§ ¨t�� Ty�rf�� ( A`�±� ¤�) �A�A`K��  d� Y�� ryKu§ T`J±� ºASf�� ¨� d`ub��

�AyRA§r�� ��Ð ¨� Am� ,�A�Ays�� �� T�wnt� T�wm�� ¨� Amh� A�whf� d`ub��  wk§  � �km§

.ºA§zyf��¤
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The dimension in vector space refers to the number of subspaces (or dimensions) that compose

this space. Dimension can be an important concept in various contexts, including mathematics

and physics.

¨t�� (T`J±� ¤�) HF±� �� T�wm�� ��d�tFA� ¨�A`K�� ºASf�� �y�m� �km§ ,¨RA§r�� �Ays�� ¨�

T�E®�� TyFAF±� T`J±�  d� Y�� ryKu§ �Ays�� �@¡ ¨� d`ub�� .ºASf�� �@¡ ¨� TWq� ©� �y�m� �yt�

�y�A`J 	lWt§ (2D) ¨¶An��� ºASf�� ,�A�m�� �ybF Yl� .d§r� �kK� ºASf�� ¨� TWq� ©� �y�mt�

.TyFAF� T`J� �®� 	lWt§ (3D) ¨�®��� ºASf�� Amny� ,TWq� �y�mt� �yyFAF�

In a mathematical context, a vector space can be represented using a set of basis vectors (or

rays) that allows unique representation of any point in that space. Dimension in this context

indicates the number of fundamental rays required to uniquely represent any point in the space.

For example, a two-dimensional space (2D) requires two basis rays to represent a point, while

a three-dimensional space (3D) requires three basis rays.

¨t�� Tflt�m�� �A¡A��³�  d� Y�� ryKu§ ¨�A`K�� ºASf�� ¨� d`ub�� ,TFdnh�� �wl�¤ ºA§zyf�� ¨�

¨� �r�t�  A`�±� ¨�®��� ºASf�� ¨� rk�� ,�A�m�� �ybF Yl� .�y`� º¨J Ahy� �r�t§  � �km§

. A`�� T�®� Ah§d� ,¨�At�A�¤ ,Tflt�� �A¡A��� �®�

In physics and engineering, dimension in vector space refers to the number of different directions

in which a particular object can move. For example, a ball in three-dimensional space can move

in three different directions, and thus, it has three dimensions.

T�wnt� T�wm�� ¨� �wls��¤ P¶AO��� �h�¤ �yl�t� AyFAF�  wk§ ¨�A`K�� ºASf�� ¨� d`ub��

.Tyml`��¤ TyRA§r�� �A�Ays�� ��

The dimension in vector space is fundamental for analyzing and understanding properties and

behaviors in various mathematical and scientific contexts.

14.2.1 : Definition - �§r`�

d`� ¤Ð E ¨�A`K�� ºASf��  �� r}An`�� �� n ¢tn�  d� ¤Ð B xAF� E ¨�A`K�� ºASfl�  A� �Ð�

	tk�¤ ¢tn�

If the vector space E has a basis B with a finite number of elements n, then the vector space
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E has a finite dimension, and we write:

dim(E) = Card(B) = n.

5.2.1 : Remark - T\�®�

. dim({0}) = 0 ©� �¤d`� d`� ¤Ð {0} �¤d`m�� ºASf��

The zero space {0} has a zero dimension, i.e. dim({0}) = 0.

19.2.1 : Example - �A��

The canonical basis for the space R2 is: :w¡ R2 ºASfl� ¨�w�Aq�� xAF±� (1{(
1

0

)
,

(
0

1

)}

Hence the dimension of space R2 is 2. .2 w¡ R2 ºASf�� d`� ¢n�¤

The vectors T`J±� (2{(
2

1

)
,

(
1

1

)}

.r}An`��  d� Hf� Yl� ©wt�§ ¢��� r�� R2 þ� xAF� ©� ¤ R2 ºASfl� xAF� AS§� �kK�

It also forms the basis of the space R2, and any other basis of the space R2 contains

the same number of elements.

.rOn� n ©w�§ (e1, e2, · · · , en) ¢� xAF� ��  ± n d`� ¤Ð Kn ºASf�� T�A� TfO� (3

In general, the space Kn has n dimensions because each basis (e1, e2, · · · , en) contains
n elements.

n + 1 ©w�§ ©@�� (1, X,X2, · · · , Xn) w¡ Pn[X] ºASf�� xAF�  ± (dimPn[X] = n + 1) (4

.rOn�

(dimPn[X] = n+ 1) because the basis of the space Pn[X] is (1, X,X2, · · · , Xn) which

contains n+ 1 elements.
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2.2.1 : Theorem - T§r\�

:An§d� n ¢tnm�� d`b�� ¤Ð ¨�A`J ºAS� ¨�

In a vector space with finite dimension n, we have:

,YO�� d�� rOn� n Ah� AyW� Tlqts� Tlm� �� •
Each linearly independent set has a maximum of n elements,

,xAF� ¨h� rOn� n �� T�wk� AyW� Tlqts� Tlm� �� •
Every linearly independent set consisting of n elements is a basis,

,��±� Yl� rOn� n �� T�wk� ¨h� d�w� Tlm� �� •
Every generative set is composed of at least n elements,

.xAF� ¨h� rOn� n �� T�wk� d�w� Tlm� �� •
Every generated set consisting of n elements is a basis.

15.2.1 : Definition - �§r`�

.£d�w� ©@�� ¨�A`K�� ºASf�� d`� ,T`J� Tlm� Tb�C ¨ms�

We call the range of a set of rays, the dimension of the vector space they generate.

6.2.1 : Remark - T\�®�

:Tq�As�� T§r\nl� TlhF �¶At� ¨¡ Ty�At�� �A\�®m��

The following observations are easy consequences of the previous theorem:

.n r��±� Yl� �A`J n �� T�wk� T`J� Tlm� Tb�C •
The range of a set consisting of n rays, at most is n.

.AyW� Tlqts� Tlm��� £@¡ �A� �Ð� Xq�¤ �Ð� n ¨¡ �A`J n �� T�wk� T`J� Tlm� Tb�C •
The range of a ray system consisting of n rays is n if and only if this system is linearly

independent.

ºASfl� AFAF� �kK� Tlm��� £@¡ �A� �Ð� Xq�¤ �Ð� n ¨¡ �A`J n �� T�wk� T`J� Tlm� Tb�C •
.£d�w� ©@�� ¨�A`K��

The range of a ray system consisting of n rays is n if and only if this system forms the
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basis of the vector space it generates.

Direct sum rJAbm�� �wm�m�� 8.2.1

¨t�� Tylm`�� Y�� CAJ²� ¨W��� rb���¤ �AyRA§r�� ¨� �d�ts§ �lWO� w¡ rJAbm�� �wm�m��

�yyhtn� �§ºAS� �§d�  A� �Ð� .Amhny� ���d�  ¤ �yflt�� �y�w� �� �y¶AS� �y� �m��

�wm�m�� Yms� rb�� T�As� ºAK�³ A`� Amh�� �nkm§ ,(�yy¶z� �§ºAS� ,�A�m�� �ybF Yl�)

.rJAbm��

The direct sum is a term used in mathematics and linear algebra to refer to the operation that

combines two distinct types of spaces without any overlap between them. If you have two finite

spaces (for example, two subspaces), you can merge them together to create a larger space

known as the direct sum.

T�A� �An¡  wk� �y� �AyRA§r��¤ ¨W��� rb��� ¨� �dyf�  wk§ rJAbm�� �wm�m�� ��d�tF�

. A`�±� �yFwt� ¤� Tflt�� Ty�w� �A�As� ��d�

The use of the direct sum is valuable in linear algebra and mathematics when there is a need

to combine different types of spaces or to expand dimensions.

16.2.1 : Definition - �§r`�

Let F and G be two sub-vector spaces of E. .E �� �yy¶z� �yy�A`J �y¶AS� G ¤ F �ky�

�yy�A`K�� �y¶ASf�� �wm�� Yms� G �� rOn� v ¤ F �� rOn� u �y� u+ v r}An`�� �ym� T�wm��

:	tk� ¢n�¤ .F +G z�r�A� ¢� z�r�¤ .G ¤ F �yy¶z���

The set of all elements u+ v where u is an element of F and v is an element of G is called

the sum of the vector subspaces F and G. We denote it with F +G. Then we write:

F +G =
{
u+ v | u ∈ F, v ∈ G

}
.

F

G

F +G
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3.2.1 : Proposition - TþyS�

: �� .E �� �yy¶z� �yy�A`J �y¶AS� G ¤ F �ky�

Let F and G be two sub-vector spaces of E. Then:

F +G is a sub-vector space of E. .E �� ¨¶z� ¨�A`J ºAS� F +G (1

.G ¤ F �w�� Hf� ¨� ©w�§ ¨¶z� ¨�A`J ºAS� ��� w¡ F +G (2

F +G is the minimal sub-vector space that simultaneously contains F and G.

17.2.1 : Definition - �§r`�

z�r�A� ¢� z�r� E ¨� rJAb� �m� ¨� G ¤ F  � �wq� .E �� �yy¶z� �yy�A`J �y¶AS� G ¤ F �ky�

: A� �Ð� F ⊕G = E

Let F and G be two sub-vector spaces of E. We say that F and G are in direct sum in E,

which we denote by F ⊕G = E if:

F ∩G = {0E} •

.F +G = E •

.E ¨�  ®�Akt�  Ay¶z�  Ay�A`J  �ºAS� G ¤ F  � �wq� rJAb� �m� ¨� G ¤ F  A� �Ð�

If F and G are in direct sum, we say that F and G are two complementary sub-vector spaces

in E.

4.2.1 : Proposition - TþyS�

F �� rOn`� dy�¤ Tq§rW� 	tk§ E �� rOn� ��  A� �Ð� Xq�¤ �Ð� E ¨�  ®�Akt� G ¤ F  � �wq�

.G �� rOn�¤

We say that F and G are complementary in E if and only if each element of E is written in

as a unique way for an element of F and an element of G.

Jihane Abdelli 38 University of Mohamed Kheidar, Biskra



Ty�A`K�� ��ºASf�� ¤ T§rb��� Ynb�� Vector space ¨�A`K�� ºASf�� .2.1

7.2.1 : Remark - T\�®�

w = u+ v  � ¨n`§ G �� rOn�¤ F �� rOn`� dy�¤ T�At� �kJ Yl� 	tk§ E �� w  � �wq� (1

Amt� ¢��� v′ ∈ G ,u′ ∈ F �y� w = u′ + v′ �kK�� �� «r�� T�At� ¤ v ∈ G ¤ u ∈ F �y�

.v = v′ ¤ u = u′

We say that w of E is written as a single writing of an element of F and an element

of G, which means that w = u+ v where u ∈ F , v ∈ G, and another writing From the

form w = u′ + v′ where u′ ∈ F , v′ ∈ G it is inevitable that u = u′ and v = v′.

¨�A`K�� ºASfl� �mk� F ¨¶z��� ¨�A`K�� ºASf��  � �wq� An��� .F ⊕ G = E An§d�  A� �Ð� (2

.Hk`�� ¤ G ¨¶z���

If we have F ⊕G = E. We say that the sub-vector space F is complementary to the

sub-vector space G and vice versa.

.Tyhtn�  A`�� ��Ð Ty�A`J ��ºAS� ¨� Xq�  wk§ Tl�Aktm�� Ty¶z��� Ty�A`K�� ��ºASf��  w�¤ (3

The presence of complimentary sup-vector spaces occurs only in finite-dimensional

vector spaces.

e have F ⊕G = E. Then  �� .F ⊕G = E An§d�  A� �Ð� (4

dim(E) = dim(F ) + dim(G).

20.2.1 : Example - �A��

Let �ky� (1

F =
{
(x, 0) ∈ R2 | x ∈ R

}
and G =

{
(0, y) ∈ R2 | y ∈ R

}
Prove that  � b��

F ⊕G = R2.

«r�  � �km§ ¤� .F + G = R2  �� (x, y) = (x, 0) + (0, y)  � Am�¤ F ∩ G = {(0, 0)} An§d�

.dy�¤ (x, y) = (x, 0) + (0, y) Ty�At�� T�Atk��  � T�whs�
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Vector space ¨�A`K�� ºASf�� .2.1 Ty�A`K�� ��ºASf�� ¤ T§rb��� Ynb��

x

y

F

G

0

G′

We have F ∩G = {(0, 0)} and since (x, y) = (x, 0) + (0, y) then F +G = R2. Or we

can easily see that the following writing (x, y) = (x, 0) + (0, y) is unique.

:  � AS§� �Ab�� Annkm§ .G′ =
{
(x, x) ∈ R2 | x ∈ R

}
�S�¤ F @��� (2

We take F and G′ =
{
(x, x) ∈ R2 | x ∈ R

}
. We can also prove that:

F ⊕G′ = R2

we prove that  � b�� (A

F ∩G′ = {(0, 0)}.

 �� (x, y) ∈ G′ AS§� ¤y = 0 ©� (x, y) ∈ F Th� �� ¢n�¤ (x, y) ∈ F ∩ G′  A� �Ð�

.(x, y) = (0, 0) ¨�At�A�¤ .x = y

If (x, y) ∈ F ∩G′ then, from one side (x, y) ∈ F i.e. y = 0 and also (x, y) ∈ G′

then x = y. Therefore (x, y) = (0, 0).

we prove that  � b�� (B

F +G′ = R2.

 � Am� .u = v + w �y� w ∈ G′ ¤ v ∈ F �� ��b� .u = (x, y) ∈ R2 �kt�

x2 ¤ x1 d�� �Ð� .x2 = y2  �� w = (x2, y2) ∈ G′  � Am� ¤ y1 = 0  �� v = (x1, y1) ∈ F

�y�

Let u = (x, y) ∈ R2. We look for v ∈ F and w ∈ G′ where u = v + w. Since

v = (x1, y1) ∈ F then y1 = 0 and since w = (x2, y2) ∈ G′ then x2 = y2. So we find

x1 and x2 where

(x, y) = (x1, 0) + (x2, x2).
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Ty�A`K�� ��ºASf�� ¤ T§rb��� Ynb��Vector space ¨�A`K�� ºASf�� .2.1

.x2 = y ¤ x1 = x− y �y� y = x2 ¤ x = x1 + x2 ¨�At�A�¤ .(x, y) = (x1 + x2, x2) ¢n�¤

d��

Then (x, y) = (x1 + x2, x2). Hence x = x1 + x2 and y = x2 where x1 = x− y and

x2 = y. We find

(x, y) = (x− y, 0) + (y, y),

.G′ �� rOn�¤ F �� rOn� �wm�� w¡ R2 r}An� �� rOn� ©�  � b�§ Am�

Which proves that any element of R2 is the sum of an element of F and an

element of G′.
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