University of Mohamed Khider, Biskra

Faculty of Exact Sciences, Natural and Life Sciences

Department: Materials Science First Year - Common Trunk

Series Nº: 4

Exercise N°1:

Calculate the bond energy of the **C=O** bond in the compound glycine (Gly) H_2N -CH₂-COOH, knowing that the standard molar enthalpy change for the formation of this compound from its elements in their standard state is $\Delta H^{\circ}f$ (Gly) = -536.71 KJ/mol.

Given:

The standard enthalpy of sublimation of glycine $\Delta H^{\circ}Sub$ (Gly) = 175.90 KJ/mol.

$$C_{(s)} \rightarrow C_{(g)} \quad \Delta H_1^0 = 717.70 \text{ Kj.} mol^{-1}$$

 $H_{2(g)} \rightarrow 2H_{(g)} \quad \Delta H_2^0 = 435.56 \text{ Kj.} mol^{-1}$
 $O_{2(g)} \rightarrow 2O_{(g)} \quad \Delta H_3^0 = 497.84 \text{ Kj.} mol^{-1}$
 $N_{2(g)} \rightarrow 2N_{(g)} \quad \Delta H_4^0 = 943.84 \text{ Kj.} mol^{-1}$

The bond	N-H	C-N	О-Н	C-O	С-Н	C-C
The bond energy E (A-B) (Kj/mol)	390.41	304.30	462.31	357.39	412.57	345.27

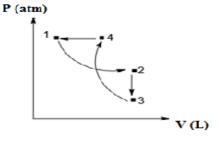
Exercise N°2:

Consider 1 kg of air as an ideal gas undergoing a Carnot cycle. AB and CD are isothermal processes, and BC and DA are adiabatic processes, with temperatures at point A equal to $T_1 = 300$ K and pressures at points C, B, A respectively as $P_3 = 9$ atm, $P_2 = 3$ atm, $P_1 = 1$ atm:

Calculate the efficiency of the cycle using two different methods:

- a) Using the heat balance (bilan).
- b) Using the temperatures at the two ends of the cycle.

Calculate the ΔS of air during the four transformations. Given Cp = 103 J/Kg.K ; $\gamma = 7/5$.


Exercise N°3:

 0.056 m^3 of an ideal gas undergoes heating at constant volume from the initial state ($T_1 = 38^{\circ}\text{C}$, $P_1 = 1.03$ atm) to the second state ($P_2 = 1.72$ atm), then undergoes heating at constant pressure to a volume of 0.126 m^3 .

For each transformation, calculate the final temperature, the amount of heat, work done, and the change in both internal energy and entropy. Cv = 20.82 J/mol.K.

Exercise N°4:

Let the Clapeyron diagram represent a series of reversible transformations for one mole of an ideal gas with the given data in the table:

	P (atm)	V(L)	T (K)
1	10	1	600
2	2	5	600
3	1	5	300
4	10	1.25	750

Academic Year: 2023/2024

Course: Chemistry 2

Calculate ΔS for each transformation, then ΔS for the cycle.

Given: Cp = 5.03 cal/K.mol; R = 2 cal/mol.K; Cv = 3.03 cal/K.mol.

Exercise N°5:

Ammonia gas at temperature 24 °C and pressure 10 atm is liquefied. We condense 1 mole of ammonia gas ($P_1 = 1$ atm, $T_1 = -20$ °C) to one mole of liquefied ammonia ($P_2 = 10$ atm, $T_2 = 24$ °C). Assume ideal behavior for ammonia gas and neglect the volume of the liquid state compared to the gas state.

Calculate ΔH , ΔU , and ΔS for the aforementioned transformation.

Given:

 $Cp(NH_3)g = 24.66 \text{ J/mol.K}; \Delta HVap(NH_3) = 19.825 \text{ KJ/mol at } 24^{\circ}\text{C} \text{ and } 10 \text{ atm}$

Exercise N°6:

Calculate the change in entropy (ΔS) during the transformation of 1 mole of solid iodine at 25°C to gaseous iodine at 184°C under atmospheric pressure using the following data:

$$\begin{split} &Cp(I_2 \ solid) = 54.6 \ J/K.mol; \ Cp(I_2 \ liquid) = 81.5 \ J/K.mol; \ \Delta H_{fus} = 15633 \ J/mol. \\ &T_{fusion}(I_2 \ solid) = 113.6 \ C; \ \Delta H_{Vaporization} = 25498 \ J/mol. \ T_{vaporization}(I_2 \ liquid) = 184 \ C. \end{split}$$

Exercise N°7:

Consider the following chemical reaction, which takes place at a temperature of 25°C:

$$H_2S(g) + 3/2O_2(g)$$
 \longrightarrow $H_2O(g) + SO_2(g)$

- 1- Calculate the change in standard enthalpy and the change in internal energy for this reaction.
- 2- Calculate the change in standard entropy for this reaction.
- 3- What is the nature of this reaction?
- 4- Calculate the change in standard enthalpy for this reaction at 800 K.

Given: Under standard conditions (P = 1 atm, T = 298 K), we have:

	H ₂ S _(g)	O _{2(g)}	H ₂ O _(g)	SO _{2 (g)}
ΔH ⁰ _f (KJ / mole)	-20.6	0	-241.8	-296.8
S ⁰ (J / mole. ⁰ K)	205.8	205.1	188.8	248.2
C _P (J / mole. ⁰ K)	34.2	29.4	33.6	39.9