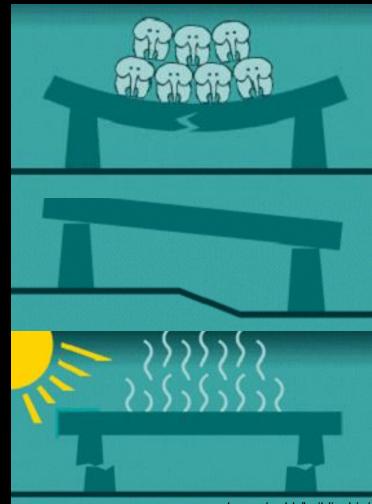

Applied Achitectural Structures: Structural Analysis and Systems arch 631 Dr. Anne Nichols Spring 2018

three




# design codes, building codes

Applied Architectural Structures ARCH 631



#### Structural Requirements

- serviceability
  - strength
  - deflections
- efficiency
  - economy of materials
- construction
- cost
- other



www.pbs.org/wgbh/buildingbig/

Applied Architectural Structures ARCH 631

#### Structure Requirements

 strength & equilibrium - safety - stresses not greater than strength - adequate foundation



Figure 1.16 Equilibrium and Stability?—sculpture by Richard Byer. Photo by author.

Applied Architectural Structures ARCH 631



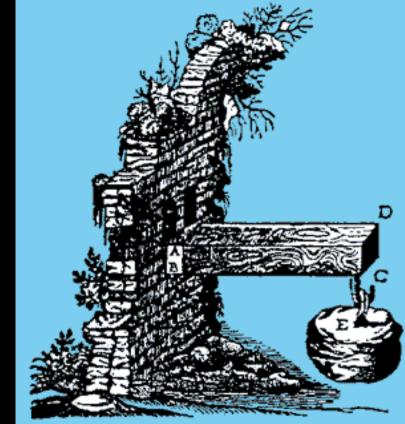
#### Structure Requirements

- stability & stiffness
  - stability of components
  - minimum
     deflection and
     vibration
  - adequate foundation

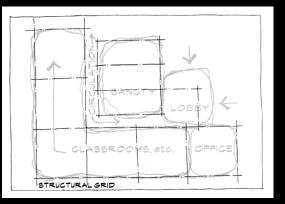



Figure 1.15 Stability and the strength of a structure—the collapse of a portion of the UW Husky stadium during construction (1987) due to a lack of adequate bracing to ensure stability. Photo by author.

Applied Architectural Structures ARCH 631


#### Structure Requirements

- economy and construction
  - minimum material
  - standard sized
     members
  - simple connections and details
  - maintenance
  - fabrication/ erection






- planning
- preliminary structural configuration
- determination of loads
- preliminary member selection
- analysis
- evaluation
- design revision
- final design



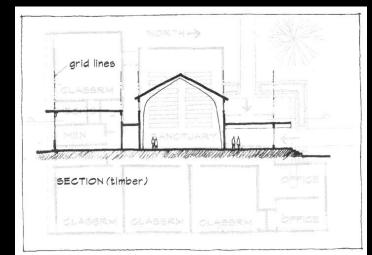

- planning to establish
  - function of structure
  - criteria for optimum design
  - code jurisdiction
- preliminary structural configuration
  - arrangement of elements within form
    - columns
    - beams
    - joists
    - trusses



Applied Architectural Structures ARCH 631

- determination of loads
  - structure weight
  - moving loads
  - severe, rare loads

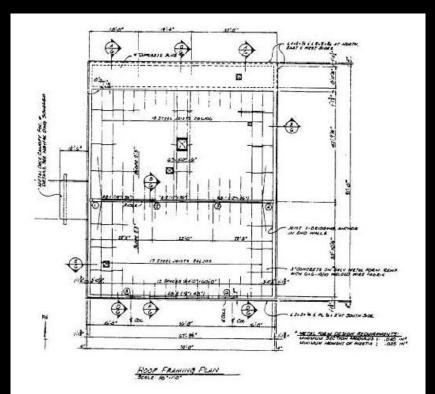



building codes

- preliminary member selection
  - based on configuration, determine loads on individual elements
  - determine internal forces & stresses
  - choose section to satisfy primary strength requirement

- analysis
  - actual structure weight
  - with other loads
  - based on structural system / modeling
    - elements columns, beams...
    - connections
    - systems frames, trusses
  - deflections and deformations
    - different load combination?
    - pattern loading

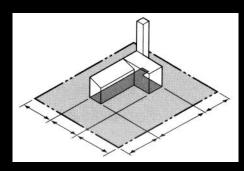



- evaluation
  - measure results against criteria
    - strength?
    - deflections?
    - economy?
- revise design
  - any criteria NOT met



 change member sizes, material, arrangement

- final design
  - analyze revised design
  - evaluate and meets
     requirements


- draw structural plan



Applied Architectural Structures ARCH 631

#### **Building Codes**

- documentation
  - laws that deal with planning, design, construction, and use of buildings
  - regulate building construction for
    - fire, structural and health safety
  - cover all aspect of building design
  - references standards
    - acceptable minimum criteria
    - material & <u>structural</u> codes



## **Building Codes**

- occupancy
- construction types
- structural chapters

   loads, tests, foundations
- structural materials, assemblies
  - roofs
  - concrete
  - masonry
  - steel

|     | OCCUPANCY OR USE                | UNIFORM<br>(psf) | CONCENTRATED<br>(lbs.) |
|-----|---------------------------------|------------------|------------------------|
| -   | OCCONTRICT ON COL               | (par)            | (103.)                 |
| 1.  | Apartments (see residential)    |                  | _                      |
| 2   | Access floor systems            |                  |                        |
| -   | Office use                      | 50               | 2,000                  |
| ļ   |                                 |                  |                        |
|     | Computer use                    | 100              | 2,000                  |
| 3.  | Armories and drill rooms        | 150              |                        |
| 4   | Assembly areas and theaters     |                  |                        |
|     | Fixed seats (fastened to floor) | 60               |                        |
|     | Lobbies                         | 100              |                        |
|     | Movable seats                   | 100              |                        |
| Į., | Stages and platforms            | 125              |                        |
| 5   | Follow spot, projections and    | 50               |                        |
|     | control rooms                   |                  |                        |
|     | Catwalks                        | 40               |                        |
| _   |                                 |                  |                        |

#### **Building Codes**

- adoptable codes
  - Southern Building Code Congress International (SBCCI)



- Building Officials & Code Administrators
   International (BOCA)
- International Conference of Building Officials (ICBO - UBC)
- International Building Code (IBC)
  - attempt to get one unified code in 2000

IBC

#### Code Reduction of Live Loads

- for (ordinary) live loads
  - factored area supported  $\geq$  400 ft<sup>2</sup>
  - reduction can't exceed
    - 0.5L<sub>o</sub> (one floor) or 0.4L<sub>o</sub> (more)

$$L = L_o \left( 0.25 + \frac{15}{\sqrt{K_{LL}A_T}} \right)$$

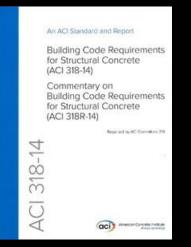
- for live loads > 100 lb/ft<sup>2</sup>
   live load reduction of 20% on columns
- for (ordinary) roofs:  $L_r = L_o R_1 R_2$ - 12 lb/ft<sup>2</sup>  $\leq L_r \leq$  20 lb/ft<sup>2</sup>

Design & Codes 15 Lecture 3

#### **Standards**

- criteria for quality
  - American National Standards Institute (ANSI)
  - American Society of Testing and Materials (ASTM)
- materials

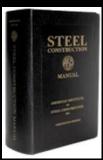





- Portland Cement Association (PCA)
- National Concrete Masonry Association (NCMA)



#### **Structural Codes**


- prescribe loads and combinations
- prescribe design method
- prescribe stress and deflection limits
- backed by the profession
- may require design to meet performance standards
- related to material or function





#### **Structural Codes**

- American Concrete Institute (ACI)
- American Institute of Steel Construction (AISC)
- Precast/Prestressed Concrete Institute
   (PCI)
- Post Tensioning Institute (PTI)
- Structural Joist Institute (SJI)



National Design Specifications (NDS)
 – American Wood Council

## Design

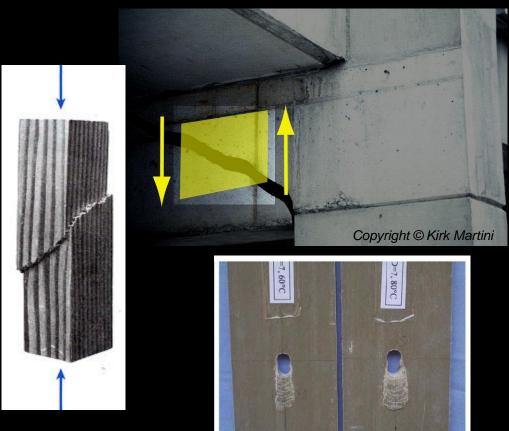
- factors out of the designer's control
  - loads
  - occurrence



- factors within the designer's control
  - choice of material
  - "cost" of failure (F.S., probability, location)
  - economic design method
  - analysis method



- different approaches to meeting strength/safety requirements
  - allowable stress design (elastic)
  - ultimate strength design
  - limit state design
  - plastic design




– load and resistance factor design

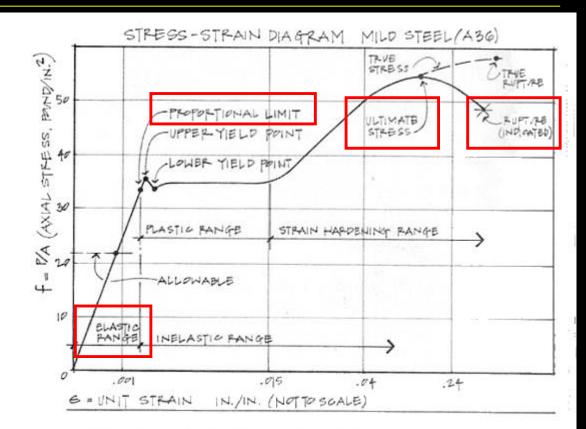
 assume a behavior at failure or other threshold and include a margin of safety

http://mceer.buffalo.edu

- structures and connections see
  - shear
  - bending
  - bearing
  - axial stress
    - compression
    - tension
  - torsion

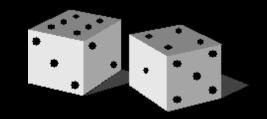


Applied Architectural Structures ARCH 631


- materials have a critical stress value where they could break or yield
  - ultimate stress
  - yield stress
  - compressive stress
  - fatigue strength
  - (creep & temperature)

acceptance vs. failure



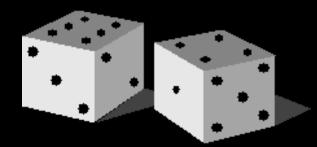

www.historychannel

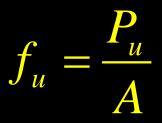
 material behavior



*Figure 5.22* Stress-strain diagram for mild steel (A36) with key points highlighted.

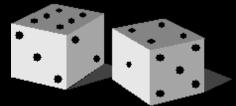
- allowable stress design
  - elastic range
  - factor of safety (F.S.)





$$f_{actual} = \frac{P}{A} \leq f_{allowed} = \frac{f_{capacity}}{F.S.}$$

- probability of loads and resistance
  material variability
- overload, fracture, fatigue, failure

- load and resistance factor design (LRFD)
   beyond allowable stress
- materials aren't uniform 100% of the time


   ultimate strength or capacity to failure may be
   different and some strengths hard to test for
- RISK & UNCERTAINTY

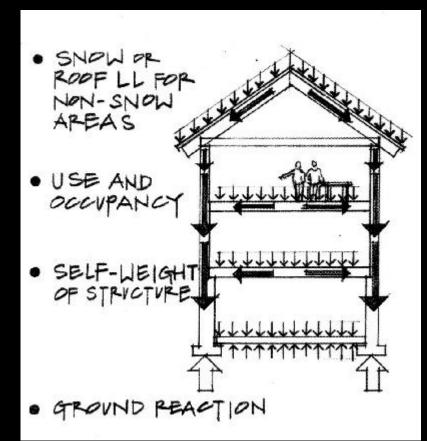




Applied Architectural Structures ARCH 631

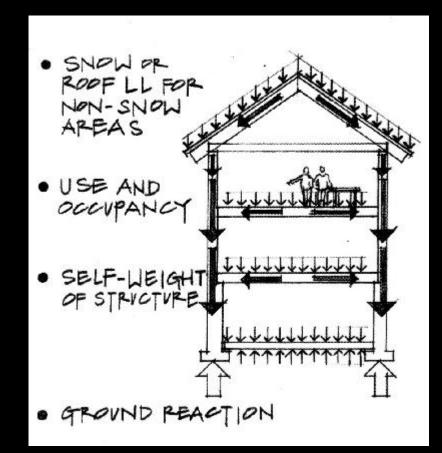
- loads on structures are
  - not constant



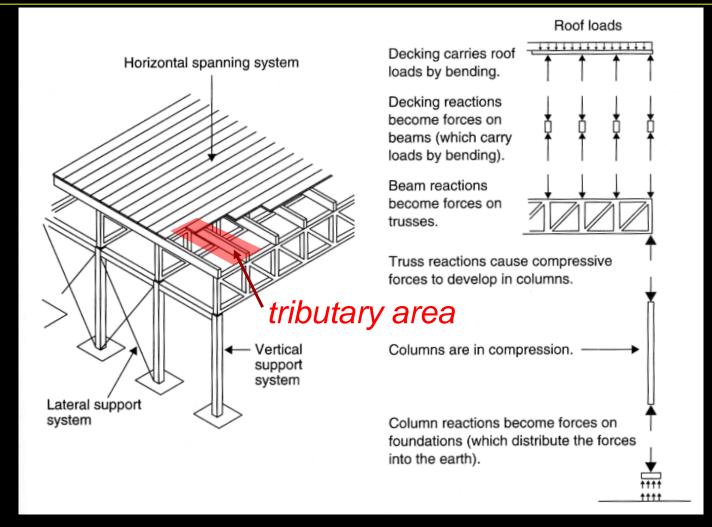

- can be more influential on failure
- happen more or less often
- UNCERTAINTY

$$\gamma_D P_D + \gamma_L P_L \le \phi P_n$$

 $\phi$  - Resistance factor  $\gamma$  - Load factor for (D)ead & (L)ive load


#### Loads

- gravity acts on mass (F=m\*g)
- force of mass
  - acts at a point
    - ie. joist on beam
  - acts along a "line"
    - *ie. floor on a beam*
  - acts over an area
    - *ie. people, books, snow on roof or floor*

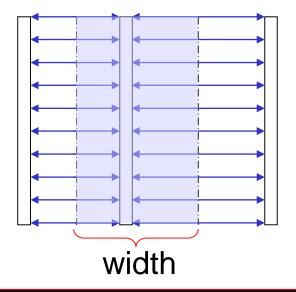


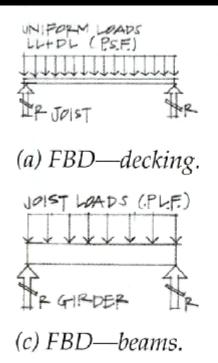

## Load Tracing

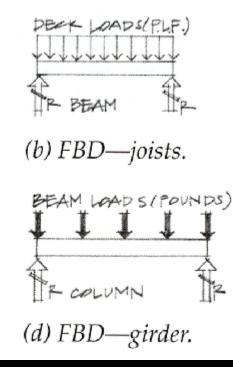
- how loads are transferred
  - usually starts at top
  - distributed by supports as <u>actions</u>
  - distributed by <u>tributary areas</u>

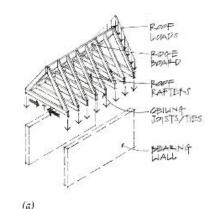


# Load Tracing



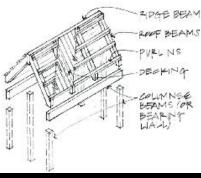


Applied Architectural Structures ARCH 631


## Load Tracing


- tributary load
  - think of water flow
  - "concentrates" load of area into center

$$w = \left(\frac{load}{area}\right) \times \left(tributary \ width\right)$$










PARTER BEAMS PARTER BEAMS SEATHING SEATHING COLUMN (CR SEATHING WALL)

(c)



Applied Architectural Structures ARCH 631

• wall systems

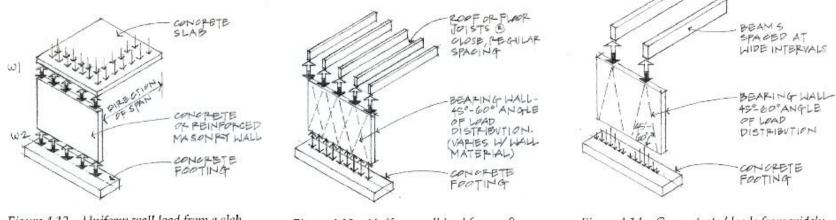



Figure 4.12 Uniform wall load from a slab.

Figure 4.13 Uniform wall load from rafters and joists.

Figure 4.14 Concentrated loads from widely spaced beams.

#### openings & pilasters

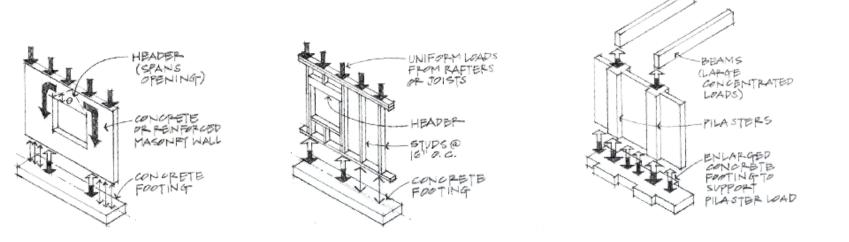



Figure 4.15 Arching over wall openings.

Figure 4.16 Stud wall with a window opening.

Figure 4.17 Pilasters supporting concentrated beam loads.

foundations

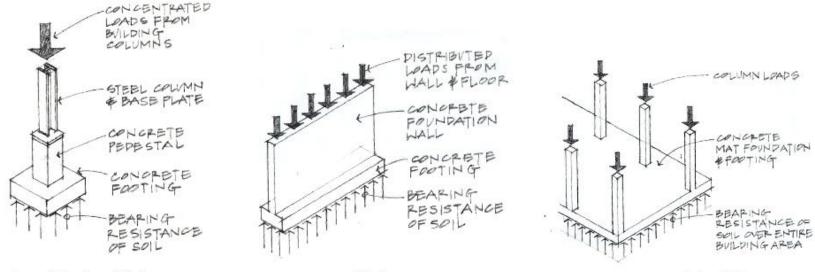
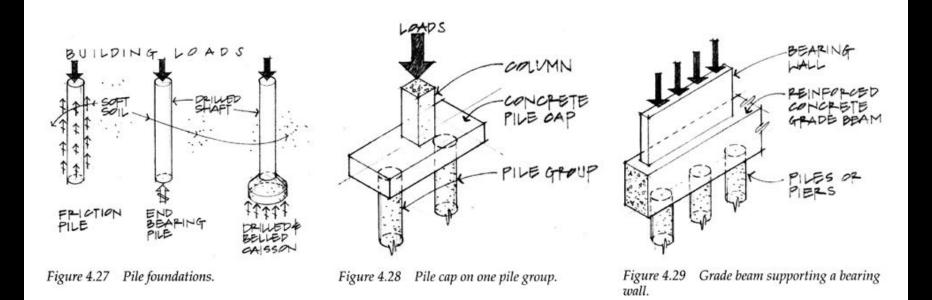
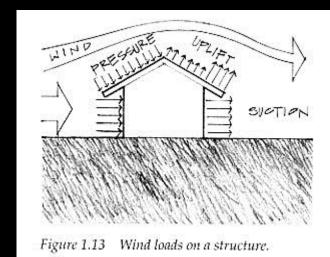




Figure 4.24 Spread footing.

Figure 4.25 Wall footing.


Figure 4.26 Mat or raft foundation.

#### deep foundations



# Load Types

- D = dead load
- L = live load
- $L_r = live roof load$
- W = wind load
- S = snow load
- *E* = earthquake load



- *R* = rainwater load or ice water load
- *T* = effect of material & temperature
- *H* = hydraulic loads from soil (*F* from fluids)

## ASD Load Combinations



- D
- *D* + *L*
- $D + (L_r \text{ or } S \text{ or } R)$



- $D + 0.75L + 0.75(L_r \text{ or } S \text{ or } R)$
- D + (0.6W or 0.7E)
- D + 0.75L + 0.75(0.6W or 0.7E) +

 $(0.75L_r \text{ or } S \text{ or } R)$ 

• 0.6D + (0.6W or 0.7E)

## **LRFD Load Combinations**



- 1.4D
- $1.2D + 1.6L + 0.5(L_r \text{ or } S \text{ or } R)$
- $1.2D + 1.6(L_r \text{ or } S \text{ or } R) + (L \text{ or } 0.5W)$
- $1.2D + 1.0W + L + 0.5(L_r \text{ or } S \text{ or } R)$
- 1.2D + 1.0E + L + 0.2S
- 0.9D + 1.0W
- 0.9D + 1.0E



- F has same factor as D in 1-5 and 7
- H adds with 1.6 and resists with 0.9 (permanent)

Design & Codes 38 Lecture 3 Applied Architectural Structures ARCH 631